FALL 2022 Department of Physics & Astronomy, UGAPHYS 8201 Advanced Electromagnetic Theory (as of Aug. 18/2022)

The course syllabus is a general plan for the course; deviations announced to the class by the instructor may be necessary.

Course	A study of classical electrodynamics. Topics include development of Maxwell's		
Description:	electromagnetic field equations and the Lorentz force equation, electrostatics and		
-	magnetostatics, time-varying fields, conservation laws, radiating systems, and		
	electromagnetic waves.		
Athena Title:	Adv EM Theory		
Grading System:	A-F (Traditional)		
Instructor:	Dr. Andrei Galiautdinov		
Office:	Physics 220		
Email:	ag1@uga.edu		
Sections:	25810 09:35am – 10:50am (Rm. 254, TTH)		
Office hours:	3:35pm – 4:35pm (TTH)		
Main Text:	Your lecture notes		
Texts (will be used mainly	(J) J. D. Jackson, Classical Electrodynamics (3 rd ed., Wiley, 1999)		
for reference and for	(L2) L. D. Landau & E. M. Lifshitz, <i>Electrodynamics of Continuous Media</i> , 2 nd edition (Course		
homework and exam	of Theoretical Physics, vol. 8; Pergamon Press, 1984)		
problems):	(L1) L. D. Landau & E. M. Lifshitz, The Classical Theory of Fields (Course of Theoretical		
	Physics, vol. 2; Butterworth-Heinenann, 1996)		
	(Z) A. Zangwill, Modern Electrodynamics (CUP, 2013)		
	"Typos & Corrections" are available at <u>http://www.prism.gatech.edu/~az2/</u>		
Prep Texts:	D. J. Griffiths , Introduction to Electrodynamics, 4 th Edition (Pearson, 2013)		
	R. P. Feynman, Lectures on Physics, vol. II, <i>Electromagnetism</i>		
Additional Materials	Will be posted on the eLC-New, http://elcnew.uga.edu		
Academic Honesty:	As a University of Georgia student, you have agreed to abide by the University's academic		
	honesty policy, "A Culture of Honesty," and the Student Honor Code. All academic work must		
	meet the standards described in "A Culture of Honesty" found at: <u>www.uga.edu/honesty</u> . Lack of		
	knowledge of the academic honesty policy is not a reasonable explanation for a violation.		
Grades:	Your grades will be posted on the eLC-New, <u>http://elcnew.uga.edu</u>		
Grading policy:	80% HOMEWORK (no make-up; must be submitted by the due date)		
	10% MIDTERM EXAM (no individual re-scheduling or make-up)		
	10% FINAL EXAM (no individual re-scheduling or make-up)		
	100% TOTAL - 20% HOMEWODK + 10% MIDTEDM + 10% EINAL		
Cut offs:	$\frac{100\% 101AL = 30\% HOWE WORK + 10\% WIDTERWI + 10\% FINAL}{E \cdot [0.60)}$		
Cut-ons.	D : [60, 68]		
	$C_{-1} = [68, 70)$ $C_{-1} = [70, 75)$ $C_{+1} = [75, 78)$		
	B_{-} : [78, 80) B: [80, 85) B+: [85, 88)		
	A_{-} : [88, 90) A: [90, 100] NOTE: No rounding: 89.99 = A_, etc.		
Grade appeal:	Grade appeals are resolved by following our departmental due procedure as described here:		
	https://www.physast.uga.edu/policies/policiesonstudentissues/grievance		
Incompletes:	"Incompletes" will not be assigned in this class.		
Hardship withdrawals:	If your course performance is significantly affected by issues beyond your control, please seek		
-	assistance promptly from Student Care and Outreach 706-542-7774 or visit https://sco.uga.edu.		
	They will help you navigate any difficult circumstances you may be facing by connecting you		
	with the appropriate resources or services. It is always easier to address exceptional		
	circumstances when you raise these concerns as early as possible. Waiting until the end of the		
	semester to take action may limit University's ability to provide appropriate support.		
Mental Health and	UGA has several resources for a student seeking mental health services		
Wellness Resources:	(https://www.uhs.uga.edu/bewelluga/bewelluga) or crisis support		
	(https://www.uhs.uga.edu/info/emergencies).		
	If you need help managing stress anxiety, relationships, etc., please visit BeWellUGA		
	(<u>https://www.uhs.uga.edu/bewelluga/bewelluga</u>) for a list of FREE workshops, classes,		
	mentoring, and health coaching led by licensed clinicians and health educators in the University		
	However, writer a different resources can be eccessed through the $1/L^2 \Lambda$ App		

Topics planned for the	Special Relativity
Spring Semester:	Relativistic electrodynamics
	Boundary-value problems (if time permits)
	Macroscopic electrodynamics with rapidly changing fields (<i>if time permits</i>)

2022 Fa	2022 Fall Schedule					
Week	Day	Date	Reading	Торіс		
			(for those who like reading)			
1	М	Aug. 15				
	Т	Aug. 16				
	W	Aug. 17				
	R	Aug. 18	(J) I.1-6, 6.11	Review of Maxwell's Theory (in a vacuum):		
				Intro to This Course		
				Charges, currents, and fields		
				Charge conservation		
				Operational definitions of the electric and magnetic fields		
				Lorentz Force Law		
				Maxwell's equations in a vacuum (in differential and integral		
				forms)		
				Systems of units		
				Boundary conditions at interfaces		
	F	Aug. 19				
	М	Aug. 22				
	Т	Aug. 23	(J) 1.1-5, 1.6 (surface	Review of electrostatics (in a vacuum):		
2			distributions)	Coulomb's Law		
				Electrostatic field		
				Maxwell's equations for electrostatic field		
				Boundary conditions at interfaces		
				Electrostatic potential		
				Laplace & Poisson Equations		
	W	Δμα 24		Diop/Add ends		
	R	Aug. 24	Comp. to (I) 4.1	Multipole expansion of electrostatic potential		
	F	Aug. 25		HMWK 1 due (5nm)		
	M	Aug. 29				
	Т	Aug. 30	(J) 1.6 (double-laver)	Double-layer and its potential		
3		0	(L2) Sec. 23			
	W	Aug. 31				
	R	Sep. 01	(J) 5.1-4	Review of magnetostatics (in a vacuum):		
				Experimental foundations, Oersted's experiment		
				Electric charge & current densities		
				Biot-Savart Law		
				Ampere's Law		
				Maxwell's equations for magnetostatic field		
				Boundary conditions at interfaces		
	Б	Sen 02				
	M	Sep. 02		Lahor Day		
	T	Sep. 05	(1) 5.6	Multipole expansion of magnetostatic vector potential		
4	1	Sep. 00	(3) 3.0	Magnetic dipole moment		
	W	Sep. 07				
	R	Sep. 08	(J) 6.1	Maxwell's correction:		
		1.1.00		The need for Maxwell's correction		
				Displacement current		
				Examples		
	F	Sep. 09				

	М	Sep. 12			
	Т	Sep. 13	(J) 5.15 (opt.; topic will be	Faraday's Law of Induction:	
5		1	revisited in relativistic	Faraday's experiments	
_			electrodynamics)	Faraday's Law of Induction	
				Lenz's Rule	
				Examples	
	W	Sep 14			
	R	Sep. 15		Self-inductance	
	K	Bep. 15		PL circuits	
				Mutual inductance	
				Transformers	
				Domos	
				Elving ring demo and its theoretical analysis	
	F	Sep 16		Trying ting denio and its theoretical analysis	
	I' M	Sep. 10			
		Sep. 19		(cont)	
6		Sep. 20		(cont.)	
0	W	Sep. 21			
	R	Sep. 22	(J) 6.7 (assume vacuum)	Energy in Electrodynamics (in a vacuum):	
				REVIEW: Work-kinetic-Energy Theorem in Newtonian and	
				relativistic mechanics	
				Energy in electromagnetic universe	
				Conservation of energy	
				Energy density	
				Poynting's vector field	
				Examples: Charging a capacitor; energy dissipated in a wire with	
				current	
	F	Sep. 23			
	Μ	Sep. 26			
	Т	Sep. 27	(J) 1.11, 4.2	Example: Energy in electrostatics	
7				Electrostatic potential energy of a localized charge distribution	
				Energy of a localized charge distribution placed in external	
			electrostatic field; electrostatic force		
	W	Sep. 28			
	R	Sep. 29	(J) 5.7, 5.16 (parts), 5.17	Example: Energy in magnetostatics	
		-	- · · ·	Magnetic energy of stationary currents; self- and mutual	
				inductance coefficients	
				Energy of a localized current distribution placed in external	
				magnetostatic field; magnetic force	
	F	Sep. 30			
	М	Oct. 03			
	Т	Oct. 04		ASIDE: Conservation Laws in tensor form	
8	W	Oct. 05			
	R	Oct. 06	(J) 6.7	Linear Momentum in Electrodynamics (in a vacuum):	
				Linear momentum in electromagnetic universe	
				Conservation of linear momentum	
				Momentum density	
				Momentum flux density	
				Maxwell's stress tensor	
				Example: monochromatic EM wave	
	F	Oct 07			
	M	Oct 10			
	Т	Oct 11	(I) 7 1 (assume vacuum)	Plane Electromagnetic Waves (in a vacuum).	
9	1	000.11	(5) 7.1 (assume vacuum)	Plane excitations and plain waves	
			(11)	Plane FM waves	
	W 7	Oct. 12			
	D	Oct. 12		MIDTERM EXAM	
	N	Oct 14			
1	Г	001.14			

	Μ	Oct. 17			
10	Т	Oct. 18	(J) 6.2, 6.3, 6.4 (opt.)	Electromagnetic potentials: Electromagnetic potentials Gauge invariance Coulomb gauge Lorenz gauge Inhomogeneous wave equation for potentials	
				Retarded potentials	
	W	Oct. 19			
	R	Oct. 20	Compare to (J) Ch. 9	Radiating systems (in a vacuum, nonrelativistic case):	
	E	Ort 21		Multipole expansion for radiating systems	
	Г	Oct. 21		Withdrawal doadling	
11	T	Oct. 25	Compare to (J) Ch. 9, 14.2 (nonrelativistic)	Electric dipole radiation and its properties (the E and B fields, differential intensity, radiation pattern, Larmor's Formula, a point charge, a system of particles with same q/m ratio)	
	W	Oct. 26			
	R	Oct. 27		(cont.)	
	F	Oct. 28		Fall Break	
12	T	Oct. 31 Nov. 01	(J) 6.6 (parts)	Review of macroscopic electrodynamics: Macroscopic averaging Macroscopic charges, currents, and fields The auxiliary <i>D</i> , <i>P</i> , <i>H</i> , <i>M</i> fields Macroscopic Maxwell's equations Constitutive relations (linear media without dispersion) Boundary conditions at interfaces	
	W	Nov. 02			
	R	Nov. 03	(L2) Ch. I (parts)	Electrostatics of ("perfect" metallic) conductors: Maxwell's Equations Boundary conditions at interfaces	
	F	Nov. 04			
	М	Nov. 07			
13	Т	Nov. 08		Example: Conducting sphere in a uniform <i>E</i> -field	
	W	Nov. 09			
	R	Nov. 10	Comp. to (J) 4.3 (L2) Ch. II (parts)	Electrostatics of dielectrics: Maxwell's Equations Boundary conditions at interfaces Linear isotropic dielectrics "Refraction" of field lines at interface	
	F	Nov. 11			
14	M	Nov. 14			
14	T W	Nov. 15	Comp. to (J) 4.4 (sphere)	Example: Dielectric sphere in a uniform <i>E</i> -field	
	R	Nov. 16	(L2) Ch. III (parts)	Steady current in "polarizable" conductors: Maxwell's Equations Boundary conditions at interfaces "Refraction" of <i>j</i> -field lines at interface	
	F	Nov. 18			
15	T	Nov. 21 Nov. 22	(J) 5.8 (L2) Ch. IV (parts)	Magnetostatics of magnetics: Maxwell's Equations in magnetostatics Boundary conditions at interfaces Diamagnetic response (demo) Linear isotropic magnetics "Refraction" of field lines at interface	

				Magnitudes of fields at the interface	
	W	Nov. 23			
	R	Nov. 24		Thanksgiving	
	F	Nov. 25			
	Μ	Nov. 28			
16	Т	Nov. 29	(J) 5.10-12 (parts)	Example: Magnetic sphere in a uniform <i>B</i> -field	
	W	Nov. 30			
	R	Dec. 01	(J) 6.7 (assume medium)	Energy in macroscopic electrodynamics:	
				Poynting's Theorem in macroscopic electrodynamics	
	F	Dec. 02			
	М	Dec. 05			
17	Т	Dec. 06		Classes End (Friday Schedule)	
	W	Dec. 07		Reading Day	
	R	Dec. 08		FINAL EXAM (cumulative): 8:00 - 11:00 am	
	F	Dec. 09			
	М	Dec. 12			
18	Т	Dec. 13		MASS FINAL EXAM (in PHYS 1112): 07:00pm - 10:00pm	
	W	Dec. 14			
	R	Dec. 15			
	F	Dec. 16		Commencement	
	Μ	Dec. 19		Grades due (12:00 PM)	
19	Т	Dec. 20			

Fall 2022 Based on 75 minute classes, 15 weeks of classes

Orientation	Aug. 15	Monday
Advisement	Aug. 15	Monday
Registration	Aug. 16	Tuesday
Classes Begin	Aug. 17	Wednesday
Drop / Add for undergraduate and graduate level courses	Aug. 17 – 23	Wednesday - Tuesday
Holiday: Labor Day - No Classes	Sept. 5	Monday
Midterm	Oct. 10	Monday
Withdrawal Deadline	Oct. 24	Monday
Fall Break	Oct. 28	Friday
Last Day of Classes prior to Thanksgiving Break	Nov. 22	Tuesday
Holiday: Thanksgiving - No Classes	Nov. 23–25	Wednesday - Friday
Classes Resume	Nov. 28	Monday
Friday Class Schedule in Effect	Dec. 6	Tuesday
Classes End	Dec. 6	Tuesday
Reading Day	Dec. 7	Wednesday
Final Exams	Dec. 8 - 14	Thursday - Wednesday
Commencement	Dec. 16	Friday
Grades Due	Dec. 19	Monday, 12 PM