Solutions to January Prelim Exam Problems

Solve: We must derive our own equation for this combination of a pendulum and spring. For small oscillations, F, remains

horizontal. The net torque around the pivot point is
L
Toet =10 =—F,LcosO— Fg (Ej sin@

2
With o = %, Fg =mg, F, =kAx=kLsinf,and [ = %mLz,
t

2
a6 = —%sinecosﬁ —3—gsin6’
dr? m 2L

We can use sinf@cos@ = %sin 26. For small angles, sin@ =~ 8 and sin26 = 26. So

2
ﬂ:_(%ﬁ_g 0
dr? m 2L

This is the same as Equations 15.32 and 15.46 with
oo [Pk, 32
m 2L

L\/3(3-0 N/m) 3098 m/s?)

The frequency of oscillation is thus

=1.73 Hz

S =0 (0.200 kg)  2(0.20 m)

The period T = % =0.58s.



(1) Let’s consider accelerations at the equator. At the maximum rotation speed, gravity and
centrifugal force are equal in magnitude.
(ZnR/T)Z/ _ G(4nR3p/3)/
R~ R?

Solve for T and you can get

T =./3n/Gp
(2) At latitude ¢,

(ZHT/T)Z/r _ G(47TR3p/3)/R2 cos (¢)

41%r/T? = G(4mRp/3)cos (@), = Rcos (@)
412Rcos (¢)/T? = G(4mRp/3)cos (¢)
n/T?=Gp/3
T =./3n/Gp
(3) Forthe Earth, p = 5500kg/m3 and G = 6.67x10"11m3 /kg sec?.

Tin = 5070 sec = 84.5 minutes



a) Assume that the solenoid is an ideal solenoid; that is
B = u Nk

If the current in the solenoid increases, the strength of the magnetic field also increases. The rate
of change in the strength of the magnetic field is equal to

dB dl . .
o = MoN —ok = Nk k

The magnetic flux intercepted by the wire loop is equal to

®O=ra’B
The corresponding rate of change of the magnetic flux is equal to

o dB_
dr T g Tt

The induced emf can be obtained from the flux law:

do >
£= - T a U, Nk

The current induced in the wire loop is equal to

ma’®

[=—= T,uoNk

=™

The solenoidal magnetic field points from left to right. An increase in the strength of the
magnetic field will induce a current in the loop directed such that the magnetic field it produces
point from right to left (Lenz's law). Therefore, the current flows from left to right through the
resistor.

b) The change in the magnetic flux enclosed by the wire loop is equal to
A®D = 27ta* 1, NI

The current flowing through the resistor is equal to



This relation shows that

do AD

e dl 1 e
AQ = J;T?dt = —Ej_w?dt= “R

Substituting the expression for DF we obtain

|40 |={2ma’ s, 1)



4.

included separately



n=5 /\ Es=51.5MeV
\VAAVA I

. E, =329 MeV
n=3 Ey=18.5MeV
=2 E,=82MeV
=1 E, =2.1MeV

Solve: (a) The energy levels are E, = n*h? /8mI*. Two adjacent energy levels have the energy ratio

2
Ep _(n+1) :n+l: Epu _ 51.4MeV:1.25:§:>n:4andn+1:5
E n? n E 329 MeV

n n

(b) We have E, =n’E,, so E; =32.9 MeV/16 =2.06 MeV. We can then find E, =8.2 MeV and E; =18.5 MeV.

(c) Y5 has five antinodes and is zero at x =0 fm and x = L.

(d) The photon energy is £, =hf =hc/A=AE,,,. Hence,

hoton

e (414x107"7 eV 5)(3.00x10° nvs)

=671x107 nm
AE  514x10%eV-329x10°% eV

A=

This is a factor 107 smaller than typical visible-light wavelengths.
(¢) Using £, =329 MeV =5.26x10""% ],

42p? 2(6.63x107* J )
m= 7= =) 152
8E,?  (526x1072 1)(10x107"° m)

=1.67x1072" kg

This is either a proton or a neutron.



(a) The energy eigenvalue equation is:

2 2 2 2
h d¢(¢)=Ew(¢) Z(;IZJ:_ZTY;;oE

C2mrZ dp?

¥ = -k,
which has solutions:

Y(P) = Ae*ik?,
with corresponding energy E = h2k?/2mré. The normalization condition is:
or L [?" , 1
1= . Y (P)Y()de = |A] ; d¢ =2m|Al? = A= =
Continuity of the wave function requires ¥ (¢ + 2m) = Y(¢p):

Aetik(@+2m) — potikd  —  pi2mki— ] = fp=peZ.

Hence, the normalized energy eigenfunctions are:

()_L ing
wn(p_me Y

and the corresponding energy eigenvalues are:

h%n?

n= )
2mry

where n € Z. Note that the ground-state energy, Ej, is nondegenerate, but that all other energies,
E, .0, are two-fold degenerate, belonging to both ,, and y_,,. We explain this physically by
noting that ¥, and _,, are waves propagating counter-clockwise and clockwise, respectively,
about the ring. Given that V(¢) = 0, there is nothing to distinguish the sense of propagation.

(b) The matrix element of H' for the unperturbed state ,, is zero:

2m

a2l = o= | ¢ —m)(¢ —2m) dg = 0,

0

because the integrand is antisymmetric about ¢ = . For the (nondegenerate) ground state, n =
0, this matrix element is the first-order energy correction. So we need to go to second order:

[(Dol H' 1) 3 2mré Z [(WolH )2
B h? k2 '

)

E,” =
(0) (0)

Eo _Ek

k+0 k+0

The off-diagonal matrix elements are:

m 6€i

€ .
(WolH Ty = o— | p(p —m)(p - 2m)e'*? dg =

3
0 k



so that the second-order energy correction is:

@ 72mr2e? < 1 72mrée? m® 4mdmre?
B =) =" -
k=1

h2 9450  525h?

For the n # 0 states, we have to use degenerate perturbation theory, which means we need to
compute the matrix elements of the perturbation Hamiltonian in the 2X2 degenerate subspace
spanned by the states [n) and |—n). We already showed that the diagonal matrix elements are
zero. The off-diagonal matrix elements are:

2T
(W H W) = %f e (¢ — m)(¢p — 2m)e™® do
0

€ Zn( ) 2)i2n¢d _36i
' , . 3ei
Thus the perturbation submatrix takes the form:
! . 0 —iC
}fsub = lC 0 )

where ¢ = 3V,/4n3. This matrix has eigenvalues +c and eigenvectors:

. 1/\/5] . [i/\/i]
"’”‘L/\/z and v =1 )
In other words:
3V,
Eilrz_iélng'

and the appropriate combinations of unperturbed energy eigenstates that are also eigenstates of
the perturbation are:

1 .
Vi(g) = 5 (Yn(P) + iY_n (@),

1
Y_(¢) = 5 (in(P) + Y_n(9)) .



