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Problem 2.1: Modern Physics 
 
Police radar detects the speed of a car as follows: Microwaves of a precisely known frequency 
are broadcast toward the car. The moving car reflects the microwaves with a Doppler shift. The 
reflected waves are received and combined with an attenuated version of the transmitted wave. 
Beats occur between the two microwave signals. The beat frequency is measured. 

(a) For an electromagnetic wave reflected back to its source from a mirror approaching at a 
speed v, show that the reflected wave has frequency  

݂ ൌ ௦݂௨
ܿ  ݒ
ܿ െ ݒ

 

Where ௦݂௨ is the source frequency. 
 

(b) When v is much less than c, the beat frequency is much less than the transmitted frequency. 
In this case, use the approximation ݂  ௦݂௨ ≅ 2 ௦݂௨, and show that the beat frequency 
can be written as ݂ ൌ  ߣ/ݒ2
 

(c) If the source wavelength is 3.00 cm and the beat frequency measurement is accurate to േ5ݖܪ, 
how accurate is the velocity measurement? 
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Solution 2.1: 
 
 

(a) Let  ݂ 	be the frequency as seen by the car, thus  ݂ ൌ ௦݂௨ට
ା௩

ି௩
 

Let ݂	be the frequency of the reflected wave, thus ݂ ൌ ݂ට
ା௩

ି௩
 

Combining gives 	

݂ ൌ ௦݂௨
ܿ  ݒ
ܿ െ ݒ

 

 

(b) Using the above result 

݂ሺܿ െ ሻݒ ൌ ௦݂௨ሺܿ   ሻݒ
(݂ െ ௦݂௨ሻܿ ൌ(	݂  ௦݂௨ሻݒ ൎ 2 ௦݂௨ݒ 
The beat frequency is then 

݂ ൌ ݂ െ ௦݂௨ ൌ
2 ௦݂௨ݒ

ܿ
ൌ
ݒ2
ߣ
 

(c) Using the above result, 

ݒ ൌ
್ఒ

ଶ
, so ∆ݒ ൌ

∆್ఒ

ଶ
ൌ

ሺହு௭ሻሺ.ଷሻ

ଶ
ൌ 0.075



௦
ൎ 0.2	݉݅/݄ 
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Problem 2.2: Modern Physics 
 
When the Sun is directly overhead, the thermal energy incident on the Earth is 1.36 kW / m2. 
Assuming that the Sun behaves like a perfect blackbody of radius Rsun = 7×105 km and the Sun-
Earth distance (d) is 1.5×108 km, (1) estimate the Sun's effective temperature, and (2) show that 
the Sun's luminosity (i.e., total energy emitted per unit time) is 3.8 × 1026 W/sec, and (3) find the 
temperature of the Earth that is in a radiative equilibrium with the Sun.  
 
 
Constants: 
Stefan-Boltzman constant  = 5.67 × 10-8 Wm-2K-4sec-1 
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Solutions 2.2 
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Problem 2.3: Quantum Mechanics 
 
Compton realized in 1921 that if X-rays with frequency ߥ hit quasi-free crystal electrons, excited 
electrons do not only emit light of the same frequency. He also observed another signal with 
frequency ߥ′  ߥ . The experiments revealed further that the difference of the respective 
wavelengths ∆ߣ ൌ ′ߥ/ܿ െ  depends only on the scattering angle, but is (speed of light :ܿ) ߥ/ܿ
independent of the target material. 

In 1923, Compton himself explained this effect on the basis of Einstein’s hypothesis that photons 
can be considered as particles with energy ݄ߥ, momentum ఊ, and zero rest mass. 

Write down the balance equations (relativistic problem!) for the total energy and momentum 
before ( ൌ ) and after the collision. Determine ∆ߣ  as a function of the angle ߠ  between 
incident and emitted light. Calculate ∆ߣ  specifically for ߠ ൌ 2/ߨ  (“Compton wavelength of 
electron”). 

 

Constants: 

݄ ൎ 6.62607 ൈ 10ିଷସ Js 

݉ ൎ 9.10938 ൈ 10ିଷଵ kg 

ܿ ൎ 2.99792 ൈ 10଼ m/s 
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Solution 2.3 
Photon energy: ܧఊ ൌ ߥ݄ ൌ ఊ :ఊ|ܿ, photon momentum| ൌ

ఔ


 unit vector of direction of : with 

photon propagation, electron energy: ܧ ൌ ඥ݉
ଶܿସ   ଶܿଶ

 

Energy balance: 

before collision: ܧ ൌ ఊܧ  ܧ ൌ ߥ݄ ݉ܿଶ 

after collision: ܧ′ ൌ ᇱఊܧ  ᇱܧ ൌ ′ߥ݄  ඥ݉
ଶܿସ   ᇱଶܿଶ

balance: ܧ ൌ  ′ܧ

 

Momentum balance: 

before:  ൌ ఊ   ൌ
ఔ


  

after: ᇱ ൌ ᇱఊ  ᇱ ൌ
ఔᇲ


ᇱ   ᇱ

balance:  ൌ  ᇱ

 

Thus, ᇱ ൌ



ሺߥ െ ᇱଶ ሻ. Substituting square′′ߥ ൌ

మ

మ
ሺߥଶ  ᇱଶߥ െ ′ߥߥ2 cos  is the angle ߠ ሻ, whereߠ

between  and	ᇱ, in energy balance yields 1/ߥ′ െ ߥ/1 ൌ


మ
ሺ1 െ cos ߣ∆ ,ሻ. Thusߠ ൌ




ሺ1 െ cos  .ሻߠ

 

For ߠ ൌ ߣ∆ it is ,2/ߨ ൌ



ൎ 2.426 ൈ 10ିଵଶm. 
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Problem 2.4: Quantum Mechanics 
 

Consider a quantum mechanical particle of mass m in a 

“square” one dimensional potential well shown to the right.  

For –a ≤ x ≤ +a the potential V(x) = 0; otherwise, V(x) = Vo .  

 
(a) Write down the Schroedinger equation for the particle. 

(b) Suppose Vo = ∞:   

i. What are the boundary conditions on the wave 

functions for the particle? 

ii. What are the possible normalized wave functions for the particle? 

iii. What are the possible energies of the particle? 

iv. Draw the wave functions for the lowest three energy levels. 
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Solutions 2.4 

a.)       . 

b) i.)  (a) (a)  0  

  ii)    

    The general form of the solution is: 

      ψ(x) = A sin(αx)+Bcos(αx)  where α = (2mE/ħ2)1/2 

    Considering the boundary conditions, we find two possible sets of solutions:   

       A = 0  and  cos(αa)=0       ‐ ( I.) 

       B = 0  and  sin(αa)=0      ‐ ( II.) 

   Thus, either  αa=nπ/2 where n is an odd integer, for set ( I.),  

         or 

                        αa=nπ/2 where n is an even integer, for set ( II.) 

    Hence,  

        

(x)  Bcos
n x

2a







, n odd

(x)  Asin
n x

2a







, n even

 

     If the wave functions are normalized, A = B = 1. 

 iii.)  Inserting the wave functions into the Schroedinger eqn. we find:   

   iv) Show solutions for n=1,2,3: 
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Problem 2.5: Thermal Physics 

Consider a gas with identical particles at temperature ܶ and pressure  in a closed box with 
volume ܸ. The internal energy is ܷ and the entropy is ܵ. There are no external forces or fields. 
Because the box is closed, no particle exchange with the environment is possible. 

(a) State the first and second law of thermodynamics for this system, both in their differential 
forms. 
  

(b) Show that in equilibrium the natural (independent) variables of ܷ are ܵ and ܸ. 
 

(c) Suppose the box is isolated (no heat and work exchange with the environment). Show that in 
this case the entropy can only increase and that it is maximal in equilibrium. 

 
(d) Consider the situation that the box with constant volume is only mechanically, but not 

thermally isolated. The gas can exchange heat with the surrounding heat bath at constant 
temperature ܶ . The natural variables are ܶ  and ܸ . By performing an appropriate 
transformation of ܷሺܵ, ܸሻ, exchange ܵ by ܶ. Show that the thus introduced thermodynamic 
potential (free energy) ܨሺܶ, ܸሻ can only decrease and that it is minimal in equilibrium.
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Solution 2.5 

The particle number is irrelevant in this problem, ݀ܰ ൌ 0. 

(a) First law: ܷ݀ ൌ ܳߜ  ܹߜ is the heat and ܳߜ where ,ܹߜ ൌ െܸ݀ is the work, 
Second law: ݀ܵ  ܵ݀) ܶ/ܳߜ ൌ  .(for reversible processes only ܶ/ܳߜ

(b) In equilibrium: ܷ݀ ൌ ܶ݀ܵ െ ܸ݀ ൌ ቀడ
డௌ
ቁ
,ே

݀ܵ  ቀడ
డ
ቁ
ௌ,ே

ܸ݀, so that indeed ቀడ
డௌ
ቁ
,ே

ൌ

ܶሺܵ, ܸሻ and ቀడ
డ
ቁ
ௌ,ே

ൌ െሺܵ, ܸሻ are independent functions. 

(c) In this case ܳߜ ൌ ܹߜ ,0 ൌ 0 and hence ܷ݀ ൌ 0. Consequently, because of the second 

law, ݀ܵ  ఋொ

்
ൌ 0, i.e., the entropy can only increase in non-equilibrium and is, therefore, 

maximal when the system reaches the equilibrium state. 

(d) Legendre transform: ܨ ൌ ܷ െ ቀడ
డௌ
ቁ
,ே

ܵ ൌ ܷ െ ܶܵ. In differential form ݀ܨ ൌ ܷ݀ െ

ܶ݀ܵ െ ܵ݀ܶ ൌ െܵ݀ܶ െ   .ܸ݀
In the described situation, ݀ܶ ൌ 0, ܸ݀ ൌ 0 and thus ܷ݀ ൌ  Second law dictates .ܳߜ
ܶ݀ܵ  ܳߜ ൌ ܷ݀. Since ݀ܶ ൌ 0: ܶ݀ܵ ൌ ݀ሺܶܵሻ. Therefore, the second law now reads: 
݀ሺܷ െ ܶܵሻ ൌ ܨ݀  0. Consequently, ܨ can only decrease in this scenario until it reaches 
its minimum in equilibrium. 

 


