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FIGURE 7-5. The total spin
angular momentum L, relative to
an arbitrary point P, of two
particles symmetrically located
with respect to the spin axis.

is independent of the location of P (independent of r,). Since the spinning

. (bject is taken to be symmetrical about the rotation axis, we can imagine it
. {0 be composed of such pairs of particles, each contributing an angular
momentum independent of the choice of axis. Thus, the object’s total spin
angular momentum is independent of axis. It is customary to locate the

. wpin-angular-momentum vector along the spin axis, as shown in Figure 7-5;
" {rom the proof given above, it could be located anywhere. It is not hard
to show that spin angular momentum is independent of the inertial frame,

" 100. The angular momentum of a spinning symmetrical object is, then,
~ an intrinsic property of the object; it is sometimes referred to as intrinsic

. ungular momentum.

The total angular momentum of a system of objects consists of the

" yector sum of the orbital and spin angular momenta; when the system is
\ jpolated, its total angular momentum is constant. We shall see that such
. particles as electrons must be assigned intrinsic angular momenta in addition

. |0 their orbital angular momenta.

7-2 Quantization of Orbital Angular Momentum

| "I'he Bohr theory of a one-electron atom introduces the principal quantum
" bumber n, whose integral value determines the total energy of the atom
nccording to the relation E, = - E,/n?, where E, is the ionization energy.
. 'I'he quantum number n also specifies the magnitude of the angular momen-
& \un L. This value comes from the electron’s orbiting the nucleus in a circular
© puth, according to L = nfi, where / is Planck’s constant divided by 2m. It
' |, however, not proper from the point of view of wave mechanics to visualize
. the electron as moving in a well-defined path, circular or otherwise.
bt Although the Bohr theory agrees with wave mechanics on the guantized
. gnergy values E,, the Bohr rule for the quantization of the magnitude of the
.' urbital angular momentum is not correct. Wave mechanics does show that
" {here is quantization of the orbital angular momentum for a one-electron
_ momic system, but the rules are more complicated than what the simple
" Pohr model provides. Because the mathematical analysis of this quantum
! . .
 problem is lengthy and involved, we shall state only the results here.!
. First, one finds that the magnitude of the orbital angular momentum L
 of un atomic system is quantized; the possible values are given by

i L=+Il+1h {7-1)
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"t Bee any textbook on elementary quantum mechanics.
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FIGURE 7-8. Allowed values
of the magnitude of the orbital
angular momentum forn = 3.

where /is an integer called the orbital-angular-momentum quantum number,
Furthermore, for a given value of the principal quantum number n, the only
permitted values of [ are integers ranging from zero to (n — 1);

1=0,1,23...,n-1

Thus, for n = 1 {ground state), the only possible value of [ is 0, and from !
Equation 7-1, the value of Lis 0. For n = 2, the value of /is restricted toOor 1,
and the corresponding values of L are 0 and +/2#, respectively. Generally fora
given n, there are n possible values of /, and therefore n possible values of
the orbital angular momentum. The integral values of the quantum number!
are often represented by letter symbols (the reasons are historical), as follows:

1=0,1,2 3,4,5,...
Symbel = §,P,D,F,G,H, . ..

Whereas in the Bohr theory, the state of an atom is specified completely by

the one quantum number n (hence, the radius of the circular orbit, or the
total energy), in wave mechanics the state of an atom is specified by the
values of all the appropriate quantum numbers. To every state there corre-
sponds a distinctive wave function i, differing from the others in the way in
which it depends on the spatial coordinates. Those states for which, say, »
is 3and lis 0, 1, and 2 are called 38, 3P, and 3D states, respectively. From
Equation 7-1, the corresponding magnitudes of the orbital angular momen-
tum L are 0, +/2#, /64; see Figure 7-6. Since the 35, 3P, and 3D states
have a common value of the principal quantum number, n = 3, then for
a single electron under the influence of a Coulomb force from a nucleus

assumed to be a point charge, the three states have identical energies

E but different angular momenta; they also differ in the spatial dependence
of the wave function. Such states, which are identical in total energy but
different in some other respect, are said to be degererate.

Recall that in the classical planetary model, a bound system’s total
energy depends only on the magnitude of the major axis of the ellipse and
not on the eccentricity of the orbits or on the orbital angular momentum.

(35) o e e o — {Bohr theory)
I VB f—— 3D
(5

V2 et 3P




Many-Electron Atoms _ 229

( }; uwantum mechanics explains certain properties of the hydrogen atom in an
./ accurate, straightforward, and beautiful way. However, it cannot approach a
. complete description of this atom or of any other without taking into account
| ¢leciron spin and the exclusion principle. In this chapter we will look into the role of
' tlectron spin in atomic phenomena and into why the exclusion principle is the key to
" ynderstanding the structures of atoms with more than one electron.

ELECTRON SPIN

7 Round and round it goes forever
" | he theory of the atom developed in the previous chapter cannot account for a num-
et of well-known experimental observations. One is the fact that many spectral
“lines actually consist of two separate lines that are very close together. An example
0l 1his fine structure is the first line of the Balmer series of hydrogen, which arises
“{)om transitions beiween then = 3and n = 2 levels in hydrogen atoms. Here the
"heoretical prediction is for a single line of wavelength 656.3 nm while in reality
- iht1e are two lines 0.14 nm apart—a small effect, but a conspicuous failure for the
E\hcory.
. Another failure of the simple quantum-mechanical theory of the atom occurs n the
~Jepnan effect, which was discussed in Sec. 6.10. There we saw that the spectral lines
i} an atom in a magnetic field should each be split into the three components speci-
] fir ¢t by Eq. (6.43). While the normal Zeeman effect is indeed observed in the spectra
)| o lew elements under certain circumstances, more often it 15 not. Four, six, or even
|jitn¢ components may appear, and even when three components are present their spac-
m:r mmay not agree with Eq. (6.43). Several anomalous Zeeman patterns are shown in
'y 7.1 together with the predictions of Eq. (6.43). (When reproached in 1923 for
ooking sad, the physicist Wolfgang Pauli replied, “How can one look happy when he
£} Linking about the anomalous Zeeman effect?™)
~ |n order to account for both fine structure in spectral lines and the anomalous
“4¢vinan effect, two Dutch graduate students, Samuel Goudsmit and George Uhlenbeck,
{lnposed in 1925 that

g Loy clecuron has an inwrinsic angular momentum, called spin. w hose magni-
B (iile 15 the same for all clectrons Associated with this angular momentuum is a
& (1aenclic moment.

.l No magnetic field
Illl Magnetic field present
|_*_I

Expected splitting

| L
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i 71 The normal and anomalous Zeeman effects in various spectral lines.
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Chapter Seven

What Goudsmit and Uhlenbeck had in mind was a classical picture of an electrai
as a charged sphere spinning on its axis. The rotation involves angular momentun,
and because the electron is negatively charged, it has a magnetic moment g opposit¢s
in direction to its angular momentum vector S. The notion of electron spin proved 0]
be successful in explaining not only fine structure and the anomalous Zeeman effedl
but a wide variety of other atomic effects as well. !

To be sure, the picture of an electron as a spinning charged sphere is open to serl;
ous objections. For one thing, observations of the scattering of electrons by other elec: |
trons at high energy indicate that the electron must be less than 107'® m across, and |
quite possibly is a point particle. In order to have the observed angular momentum
associated with electron spin, so small an object would have to rotate with an equi: 8
torial velocity many times greater than the velocity of light. p

But the failure of a model taken from everyday life does not invalidate the idea of ;
electron spin. We have already found plenty of ideas in relativity and quantum physic |
that are mandated by experiment although at odds with classical concepts. In 1929 ]
the fundamental nature of electron spin was confirmed by Paul Dirac’s development of |
relativistic quantum mechanics. He found that a particle with the mass and charge ol
the electron must have the intrinsic angular momentum and magnetic moment pro- §
posed for the electron by Goudsmit and Uhlenbeck.

The quantum number s describes the spin angular momentum of the electron. The §
only value s can have is s = 7, which [ollows both from Dirac’s theory and from spec: :
tral data. The magnitude S of the angular momentum due to electron spin is given i '
terms of the spin quantum number s by '

Spin angular S=Vis + Dh = __\g_gﬁ (7.1

momentum

This is the same formula as that giving the magnitude L of the orbital angular |
momentum in terms of the orbital quantum number i, L = VI + 1 .

et S ———i = i — et ol

Example 7.1

Find the equatorial velocity v of an electron under the assumption that it is a uniform sphere ol
radius ¥ = 5.00 X 10~ m that is rotating about an axis through its center.

Solution

The angular momentum of a spinning sphere is lw, where I = L mr? is its motment of inertia
and @ = u/r is its angular velocity. From Eq. (7 1) the spin angular momentum of an electron 4

is S = (V3/2)h, so
S$= —\/—iﬁ = lw= (Emrz)(z) = Emvr
2 5 5

4

=501 %X 10%m/s =167 X 10"

uv= (ﬂ)i = (S\/E)(IOSS X 10_34_] « gl
4 mr (4)(911 X 10_31 kg)(500 b4 10 17 m}

The equatorial velocity of an electron on the basis of this model must be over 10,000 times the
velocity of light, which is impossible, No classical model of the electron can overcome this
difficulty. ]
;
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! Table 7.1 Quantum Numbers of an Atomic Electron

- Name Symbol Possible Values Quantity Determined

B+ - E

-~ Irncipal n 1.2, 3wy Electron energy

| Uibial I 0 T S L | Otbital angular-momentum magnitude
L Magnetic my =T, Ot Orbital angular-momentum direction
| 5pin magnetic mg -1 +] Electron spin direciion

#
3

.;';' The space quantization of electron spin is described by the spin magnetic quantum
* iumber m,. We recall that the orbital angular-momentum vector can have the 21 + 1
| pricntations in a magnetic field from + to —1. Similarly the spin angular-momentum
| vector can have the 25 + 1 = 2 orientations specified by m, = +1 (“spin up”) and
" . = — 1 (“spin down™), as in Fig 7.2. The component 5, of the spin angular momentum
" i an electron along a magnetic field in the z direction is determined by the spin mag-
| netic quantum number, so that

L
_ ¢ component of 1
. #pn angular S,=mh==% z-ﬁ (7.2)
3 . Ihonentum
| We recall from Sec. 6.10 that gyromagnetic ratio is the rano between magnetic
+ noment and angular momentum. The gyromagnetic ratio for electron orbital metion
" js — c/2m. The gyromagnetic ratio charactenistic of electron spin is almost exactly twice
|l charactenstic of electron orbital motion. Taking this ratio as equal to 2, the spin
| mignetic moment u, of an electron is related to its spin angular momentum S by

hpin magnetic e

mement P55 ','1'1'5 (7.3

A T

 The possible components of p, along any axis, say the z axis, are therefore hmited to

__ component of
.:Z pin magnetic fhey = £ = = *pug (7.4)
- ment
Whete g is the Bohr magneton (= 9.274 X 1072* T = 5.788 X 107 eV/T).

" The introduction of electron spin into the theory of the atom means that a total of
giur quantum numbers, n, |, m;, and m, is needed to describe each possible state of
." niomic electron. These are hsted in Table 7.1.

i

1.2 EXCLUSION PRINCIPLE

A different set of quantum numbers for each electron in an atom

Il » normal hydrogen atom, the electron is in its quantum state of lowest energy. What
joul more complex atoms? Are all 92 electrons of a uranium atom in the same quantum
flite, jammed into a single probability cloud? Many hnes of evidence make this idea
nlikely

Figure 7.2 The two possible ori-
entations of the spin angular
momentum vector are “spin up”
{m;= +}) and “spin down’
{m, = =i},
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FIGURE 7-28. Electron
configuration of lithium in the
ground state.

to whether they are singlets or triplets, that is, whether the two electron |
spins are antialigned or aligned, respectively. Note that the 138 state dock
not exist. When the atom is in an excited state, one of the electrons may |
remain a 1s electron in the K shell and the second electron occupy any of the
higher excited levels. For example, the electron configuration of the firs| _:
excited state in helium is 1s'2s'. Typically, transitions occur only between |
singlet states or only between triplet states. 5

The element with the next lowest atomic number, Z = 3, is lithium, |
sLi. Of the three electrons in this atom, the first two occupy the two available |
n = 1 states. Therefore, as the exclusion principle requires, when lithiunm
is in its ground state, the third electron goes to the lowest of the remaining
available levels. The next-lowest available level after the K shell is n =
and [ = 0. Then the ground-state configuration of the electrons in lithium |
is 1s?2s!, indicating two electrons in the closed K shell and one electron in tha - 1
incornplete ! = 0 subshell of the L shell; see Figure 7-28. g

Proceeding in this fashion—adding one electron as the nuclear chargs
or atomic number is increased by one unit, but always with the restriction |
that no fwo electrons within the atom can have the same set of quantum
numbers—we can find the ground-state electron configurations of other.
atoms. We see from Figure 7-25 that two electrons can be accommodated in i
the s subshell of the L shell and six electrons in the p subshell, after which |
the L shell is completely occupied, holding its full quota of eight electrons, i
Table 7—4 gives the electron configurations of the elements from beryllium
to sodium.

TABLE 7-4 3
ELEMENT  ELECTRON CONFIGURATION FOR THE GROUND STATE i
«Be 1s? 257 ;
B 1s? 22 2p! t
«C 1s? 2? 2p?
N 1s? 2s* 2p?
50 1s? 2g? 2p!
of 1s? 2g? 2ps
1olNe 1s? 2g? 2ps 7
nNa 1s? 2g? 2p* 3s!

We shall shortly note the chemical properties of several elements listed
in Table 7-4 relative to their electron configurations and the occurrence of
closed shells and subshells. First we note some of the properties of sodium
that are directly related to its electron configuration, 1s22s22p%3s!. A singlg
valence electron is outside the closed L shell, and the lowest state availablo
to this valence electron is the 3s state. In the inner, closed subshells, the |
electrons’ total angular momentum and magnetic moment is zero, since both 1
their orbital angular momenta and spin angular momenta are paired off. :
These closed shells, 1s?, 2s?, and 2pS, are chemically inert and correspond to
the electron configuration of the inert gas neon. The reason that sodium
behaves approximately like a hydrogen atom is clear; a single valence elec-
tron moves about inner, inert, closed electron shells. The optical spectrum
of sodium originates from the change in the state of the valence electron,
while the ten electrons in the inner closed shells remain in their same states.




