Interference Pattern Intensity Distribution

Example Problem

A He-Ne laser with λ =633 nm shines on a double slit separated by 0.35 mm. At what minimum angle is the intensity 50% of the maximum? If the screen is located 1.8 m away, what is the distance between the two angles on either side of the maximum for which this intensity occurs?

Intensity for multiple slits

Two sources

Three sources

Four sources

©2004 Thomson - Brooks/Cole

Diffraction Gratings

Chromatic Resolving Power

If the source (i.e., a star) is not monochromatic, a diffraction grating can perform the same function as a prism – separate the different λ components For m=0, all components are merged As |m| increases, the order of components separate more and more What if λ_2 and λ_1 are close?

 $\lambda_2 > \lambda_1$

Example Problem

Three discrete spectral lines occur at angles of 10.09, 13.71, and 14.77 in the first-order spectrum of a grating spectrometer. (a) If the grating has 3660 slits/cm, what are the wavelengths of the light? (b) At what angles are these lines found in the second-order spectrum?

Many black hole mergers have been detected so far, as well as black holeneutron star mergers

First binary neutron star merger Aug. 17, 2017

H		Big Bang fusion				Dying low-mass stars			Exploding massive stars								He 2
	Be 4	Cosmic ray				Merging neutron			Exploding white			B 5	6 6	N 7	0 8	F 9	Ne 10
1Na 11	IVIG 12		fis	ssion		stars			dwarfs			AI 13	5 14	15	5 16	U 17	Ar 18
19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe 26	Co 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	-Ru 44	Rh 45	Pd 46	Ag 47	Cd 48	-In 49	Sn 50	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba	<u>م</u>	Hf 72	.Ta ₇₃	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr 87	Ra 88		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	-Yb	Lu
			57 _ Ac 89	58 Th 90	59 Pa 91	60 U 92	61 Np 93	62 Pu 94	63	64	65 LIGO	66	6 67 68 69 70 71				
	Origins of the elements																

Example Problem

A mirror in a Michelson Interferometer is moved a distance of L=0.382 mm. During this movement, 1700 fringe shifts (light to dark to light) are observed in the interferometer pattern. What is the wavelength of the incident light?