Chapter 15: The Electric Field of Distributed Charges

We extend the concepts of electric field calculations from a few point charges to a distribution of a large number of point charges

□ In the limit the number of point charges goes to infinity, then we obtain a continuous distribution of charge

In this chapter, we'll obtain analytical electric field equations for certain, restricted configurations of charged rods, rings, arcs, cylinders, disks, and spheres

Continuous Charge Distributions

Electric fields for arbitrary observation points of these simple objects, cannot easily be done analytically

Computational models are needed for theses cases

- Electric fields of arbitrary charge distributions also require computational models
- □ Generally, we can define three types of continuous charge distributions
- linear charge density Q/L (C/m)
- surface charge density Q/A (C/m²)
- volume charge density Q/V (C/m³)

From these, we can define infinitesimal elements of charge and coordinates

Example Problem

θ $O = \lambda I$ X x_2 χ_1

$$-L/2 - L/2 -$$

A thin rod of length L and uniform linear charge density λ lies along the x axis. (a) Show that the electric field a distance y from the rod along its perpendicular bisector, has no x component and is given by $E=2k_{e}\lambda \sin\theta_{0}/y$. (b) Using this result show that the field of a rod of infinite length is $E=2k_{A}\lambda/y.$