Chapter 19: Capacitance and Dielectrics Capacitance $Q = C\Delta V$ $C = \frac{Q}{\Lambda V}$

D Parallel plate capacitor $C = \frac{\varepsilon_0 A}{d}$

Equivalent capacitance for capacitors in parallel

Example problem

When a potential difference of 150 V is applied to the plates of a parallel-plate capacitor, the plates carry a surface charge density of 30.0 nC/cm² (after coming to steady-state). What is the spacing between plates? If the surface area of a plate is 7.60 cm², what is the capacitance and charge?

Polar molecules With E=0

With applied E

