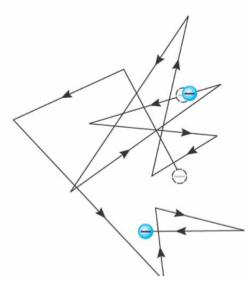

Chapter 17: Current

Current $I = \frac{dQ}{dt}$ $Q = \int_0^t I(t)dt$


 \Box In terms of the current density $I = \int \vec{J} \cdot d\vec{A}$

□ For a uniform current density perpendicular to the area element J = I/A

Microscopic Description of Current

- Consider a conductor with cross sectional area A and a segment length Δx
- If there is no potential difference across it, the electric field in the wire is zero and therefore the current is zero
- However, there are electrons moving within the conductor
- These conduction electrons move in random directions, but at high speeds ~10⁶ m/s

 \bigcirc No net displacement of the electrons \rightarrow no current \rightarrow no electric field However, if a ΔV is applied then there is an electric field in the conductor and a current Considering the current at a microscopic level, there is \rightarrow a volume element of A Δx \rightarrow with n total number of charge carriers per unit volume \rightarrow each with positive charge q The total charge in the volume element is $\Delta Q = nA\Delta xq$ They move with a constant speed, the drift speed

In a vacuum with a uniform electric field, electrons move in a straight line in the opposite direction of the field lines However, in a conductor, the electrons travel for short distances (~40 nm), in random directions until they encounter an atom, where the electron is scattered in a random direction Nevertheless, the electrons move slowly in the direction opposite the electric field at the drift speed ($\sim 10^{-4}$ m/s) The drift speed of electrical conduction can be understood through the Drude model which applies classical mechanics