KEY

PHYS 1312 Fall 2017 Test 2 Sept. 28, 2017

Student ID _____

Score _

and a bonus problem. For lations, and reasoning clear	of one set of conceptual question the problems, you must show all rly to receive credit. Be sure to it e. An equation sheet is provided	of your work, calcu- include units in your
Problem 1. Conceptual que False. (10 points total, no calcu	estions. State whether the following ulations required)	statements are True or
(a) A person who is far-sight	ted has a near-point which is more tha	in 25 cm from their eye.
True	D FP	NP
(b) In an electronic camera,	the image located at the detector is	upright. = 25 cn
Fala	ATC invovted	

(c) A Michelson interferometer which uses a laser of wavelength λ has a bright fringe at the center of its interference pattern. If one of the mirrors is moved a distance $\lambda/4$, a dark fringe will appear at the center.

$$d = \lambda = distance mirror more, S = 2d = \lambda = pahlensh$$

$$distorne$$

$$True$$

$$\Rightarrow bright - adarde$$

Problem 2. (a) The distance between the eyepiece and the objective lens of a compound microscope is 20.0 cm. If the focal length of the eyepiece is 3.00 cm, what focal length is needed for the objective lens to give a magnification of -500? Why is the magnification negative. (b). If we use the same eyepiece on a telescope, but use an objective lens with focal length 1.00 m, what is the resulting magnification? (30 points total)

q)
$$L = 20.0 cm$$

 $f_e = 3.0 cm$
 $M = -500$
 $f_o = ^{9}$

$$M = M_{o}m_{e}$$

$$= -\frac{L}{J_{o}} \frac{2f_{cm}}{f_{e}}$$

$$= \frac{1}{J_{o}} \frac{2f_{cm}}{f_{e}}$$

$$= \frac{1}{J_{o}} \frac{1}{f_{o}}$$

$$= \frac{1}{J_{o}} \frac{1}{f_{o}}$$

b)
$$m = -\frac{f_0}{f_0}$$

$$= -\frac{100 \text{ cm}}{3.0 \text{ cm}}$$

$$= 7 - 33.3$$

- sli+

Problem 3. A single slit has a width of 1.00×10^4 nm and is located 1.00 m away from a screen. If the slight is illuminated by light with a wavelength of 400 nm, how wide is the central peak? (i.e., distance between minima on either side of the peak). (30 points total)

a Sin
$$O_{dork} = m \lambda / m = 1$$

$$lano = \frac{4}{L} \qquad land = sin(\frac{\lambda}{q})$$

$$W = 8.006 \times 10^{-2} m = 8.0 cm$$

Problem 4. A light source consists of two different wavelengths (549 and 551 nm). We want to select a diffraction grating that can resolve the two wavelengths. (a) What is the required resolving power? (b) If we detect the second-order diffraction peaks, how many slits must the image fall on? (c) What are the angles θ of the diffraction peaks, in second-order, for the two wavelengths? Assume in (c) that all of the slits from part (b) are contained in 1.00 cm. (30 points total)

7) =
$$SA_{nn}$$
, $h_2 = SS_{nm}$

$$A = \frac{\lambda_1 + \lambda_2}{2}$$

$$A = \frac{\lambda_2}{2} = \frac{SS_{nm}}{2}$$

$$A = \frac{\lambda_3}{2} = \frac{SS_{nm}}{2}$$

$$A = \frac{\lambda_1 + \lambda_2}{2}$$

$$A = \frac{\lambda_2}{2} = \frac{SS_{nm}}{2}$$

b)
$$R = Nm = N = \frac{R}{m} = \frac{275}{2} = 137.5 = \boxed{138 \text{ s.l.4s}}$$

c)
$$d\sin\theta = m\lambda$$
 $m=2$, $d=\frac{1 \text{cm}}{N} = 7.246 \times 10^{-2} \text{cm}$
 $\sin\theta = \frac{2\lambda}{N} = 7.246 \times 10^{-5} \text{m}$

or
$$\theta_1 = 5ih^{-1} \left(\frac{2}{J} \right) = 5ih^{-1} \left(\frac{2 \cdot 549 \times 10^{-9}}{7.246 \times 10^{-9}} \right) = \left(\frac{0.868}{9} \right)$$

$$O_2 = \sin^{-1}\left(\frac{2.55/\times10^{-9}}{7.246\times10^{-5}}\right) - \left(0.87/^{\circ}\right)$$

Bonus Problem. Starting with the relation for the intensity of the single slit

$$I = I_{\text{max}} \left[\frac{\sin(\beta/2)}{\beta/2} \right]^2 \tag{1}$$

where

$$\beta = \frac{2\pi}{\lambda} a \sin \theta \tag{2}$$

show that the first maximum (beyond the central maximum at $\theta = 0$) occurs for $\beta \sim 2.86\pi$. Why does it not occur at 3π ? (Hint: take a derivative with respect to β). (5 points total)

$$\frac{d\left[T/I_{\text{DEX}}\right)}{d\beta} = \frac{d}{d\beta} \left[\frac{\sin(N_2)}{B/2}\right]^2 = 2 \frac{d}{d\beta} \left[\frac{\sin(B/2)}{B/2}\right]$$

$$= \frac{2}{(B/2)} \frac{d}{d\beta} \left(\frac{\sin(B/2)}{B/2}\right) - \frac{2}{3} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2}$$

$$= \frac{4}{(B/2)} \frac{1}{d\beta} \frac{\cos(B/2)}{B/2} - \frac{2}{3} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2} = 0$$

$$= \frac{2}{(B/2)} \frac{1}{d\beta} \frac{\cos(B/2)}{B/2} - \frac{2}{3} \frac{\sin(B/2)}{B/2} = 0$$

$$= \frac{2}{(B/2)} \frac{1}{d\beta} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2} = 0$$

$$= \frac{2}{(B/2)} \frac{1}{d\beta} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2}$$

$$= \frac{2}{(B/2)} \frac{1}{(B/2)} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2} \frac{\sin(B/2)}{B/2}$$

$$= \frac{2}{(B/2)} \frac{1}{(B/2)} \frac{\sin(B/2)}{B/2} \frac{\sin$$