KEY

PHYS 1311 Spring 2023 Test 2 March 2, 2023, 9:35 - 10:50 am

Name _____ Student ID _____ Score _____

Note: This test consists of one set of conceptual questions, five problems, and a bonus problem. For the problems, you *must show all* of your work, calculations, and reasoning clearly to receive credit. Be sure to include units in your solutions where appropriate. An equation sheet is provided on the last pages.

Problem 1. Conceptual questions. State whether the following statements are *True* or *False*. (10 points total, no calculations required)

(a) Kinetic friction is one of the four fundamental forces.

False

(b) One of the postulates of the theory of special relativity is that the speed of light is the same in all reference frames.

True

(c) The two forces involved in Newton's third law must originate from the same physical mechanism.

True

(d) The strong nuclear force can be used as a good model to describe the tension force.

False, the spring force

Problem 2. A kayaker needs to paddle north across a 100-m-wide harbor. The tide is going out creating a tidal current that flows to the east at a speed of 2.0 m/s. The kayaker can paddle with a speed of 3.0 m/s. (a) In which direction should she paddle in order to travel straight across the harbor? (b) How long will it take her to cross? (Hint: draw a velocity vector diagram). (15 points total)

Vector diagram). (15 points total)
Use galileau transformation

$$\vec{v}' = \vec{v} - \vec{v}_0$$

 $|\vec{v}| = 3.0 \text{ m/s}, |\vec{v}_0| = 2.0 \text{ m/s} \text{ cl}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 2.0 \text{ m/s} \text{ cl}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 2.0 \text{ m/s} \text{ cl}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 2.0 \text{ m/s} \text{ cl}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 2.0 \text{ m/s} \text{ cl}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 2.0 \text{ m/s} \text{ cl}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 2.0 \text{ m/s} \text{ cl}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 2.0 \text{ m/s} \text{ cl}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 2.0 \text{ m/s} \text{ cl}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \hat{s}, |\vec{v}_0| = 100 \text{ m}$
 $\vec{v} = |\vec{v}_0| \vec{v} = 100 \text{ m}$
 \vec{v}

Problem 3. Measurements show that Jupiter's gravitation force on a mass of 1 kg near Jupiter's "surface" is 24.9 N. If the radius of Jupiter is 71,500 km, what is the mass of Jupiter? (15 points total) \searrow \Re \Im

mg_ $\Sigma F_{y} = Mq_{y}$ M $\frac{GM_{5M}}{R_{5}^{2}} = Mg_{5}$ $(24.9)(71,500 \times 10^3)^{-1}$ (1)(6.673×10⁻¹¹) mgj M3 = 1.9 mG

Problem 4. A proton and an electron are separated by a distance of 0.529×10^{-10} m. (a) Calculate the force on the electron due to the proton. (b) Compute the center of mass of the proton-electron system. If the radius of a proton is 0.84×10^{-15} m, is the center of mass outside the proton radius? (15 points total)

9)
$$F_e = k_e q_1 k_2 = k_e c(-e) = -k_e e^2$$

 $= -\frac{8.99 \times 10^9 (1.60 \times 10^{-19})^2}{(.529 \times 10^{-10})^2} = -\frac{8.2 \times 10^{-8} N}{(.529 \times 10^{-10})^2} \text{ or } (-8.2,0,07 \times 10^N)$
b) $X_{cm} = \frac{m_p \times p + m_e \times e}{m_p + m_e} = \frac{0 + m_e \Gamma}{m_p + m_e} = \frac{m_e}{m_p + m_e} \Gamma \int \Gamma p e^{-1} P e^{-1}$
 $= (\frac{q_1/0q_1 \times 10^{-31}}{(1.01 \times 10^{-31} + 1.6726 \times 10^{-27})} (0.529 \times 10^{-10}) = [2.88 \times 10^{-14} m_e]$
Problem 5. Two haves of creal are sitting pert to each other on a flat surface. The left one

Problem 5. Two boxes of cereal are sitting next to each other on a flat surface. The left one of mass 1.0 kg is a box of Cheerios, while the right one of mass 3.0 kg is a box of Wheaties. A force of < 12.0, 0, 0 > N is applied to the Cheerios box and both boxes move to the right. If the magnitude of the friction force on the Cheerios and Wheaties boxes are 2.0 N and 4.0 N, respectively, what is the force on the Wheaties box due to the Cheerios box? Draw all $\sim f_2$ necessary free body diagram(s). (15 points total)

Consider the Wheater box	
in X-direction Cheerico by F_JM, M2	
$\pm 5F_{X_2} = M_2 \times 2 \qquad $	
$D = f_{21} - f_2 = m_2 q_{\chi_2}$ $F - F_{12} - f_1$ F_1 f_1 m_{g} f_2 f_2 m_{χ_2}	
52	
but ax = 9x2 and Fiz = -Fiz From O Fiz = m, + M2	
3) For both masses [From ()]	
$F = f_1 - f_2 = (m, +m_1)a$ $F_{21} = m_2 q_1 + m_2 + m_1 + m_1 + m_2 $	
$m \in M, em_2 \qquad f = f = f^2 m J = m (f = f^2 + f = f^2)$	
- [7M] = [7M]	

Problem 6. (a) Beginning with Newton's 2^{nd} Law, derive the impulse-momentum theorem for the case where the force is a function of time, F(t). (b) State the necessary condition(s) for and derive conservation of linear momentum. (c) Using part (b) consider a 1000 kg cart rolling to the right on a horizontal surface at 5.0 m/s. A 70 kg man is standing on the right end of the card. What is the speed of the cart if the man suddenly starts running to the left with a speed of 10 m/s relative to the cart? (30 points total)

9)
$$\leq \vec{F} = \vec{F}_{hcf} = m\vec{a} = m d\vec{v} = 1d (m\vec{v}) = d\vec{p}$$

or $\vec{F}_{hcf}(t) = d\vec{p}$
 $dt = dt$ \vec{P}_{p}
 dt \vec{P}_{p}
 dt

Bonus Problem. In Earth's reference frame, a tree is at the origin and a pole is at x = 30 km. Lightning strikes both the tree and the pole at the same instant at a time of $t = 10 \ \mu$ s. The lighting strikes are also observed by a SpaceY luxury star cruiser traveling at 0.5c in the *x*-direction. (a) What are the horizontal coordinates and times of the two events as viewed by the star cruiser? (b) Are the events simultaneous in the star cruiser's frame? If not, which occurs first? (5 points)

$$\begin{aligned} & \text{Wind out is site. (5 points)} \\ L = 30 \text{ km} = X_{p} , X_{trie} = 0 \\ & t = 10 \text{ As} = 10^{-5} \text{ s} \\ & \text{Use. Loven for the trips formetion} \end{aligned}$$

$$\begin{aligned} & \text{Y}' = \mathcal{X} \left(X - V_{p} t \right) , \text{Vo} = 0.5 \text{ c} \\ & t' = \mathcal{T} \left(t - \frac{V_{h}}{C^{2}} \right) \\ & t'' = \mathcal{T} \left(t - \frac{V_{h}}{C^{2}} \right) \end{aligned}$$

$$\begin{aligned} & \text{Tree} \left[X' = 1.1547 \left(0 - 0.5 \text{ c} t \right) \\ & = 1.1547 \left(0 - \frac{3 \times 10^{8}}{2} \left(10^{-5} \right) \right) \end{aligned}$$

$$\begin{aligned} & = 1.1547 \left(10^{-5} - \frac{1}{2(1 \times 10^{8})} \right) \end{aligned}$$

$$\begin{aligned} & \text{E} \left[1.1547 \left(10^{-5} - \frac{1}{2(1 \times 10^{8})} \right) \right] \end{aligned}$$

$$\begin{aligned} & \text{Fold} t$$

$$\begin{aligned} & \text{E} \left[1.1547 \left(10^{-5} - \frac{3 \times 10^{9}}{2(1 \times 10^{8})} \right) \right] \end{aligned}$$

b) pole before track