PHYS 1311 Spring 2022 Test 3 April 7, 2022

Name _____ Student ID _____ Score _____

Note: This test consists of one set of conceptual questions, five problems, and a bonus problem. For the problems, you *must show all* of your work, calculations, and reasoning clearly to receive credit. Be sure to include units in your solutions where appropriate. An equation sheet is provided on the last page.

Problem 1. Conceptual questions. State whether the following statements are *True* or *False.* (10 points total, no calculations required)

(a) In uniform circular motion, the tangential acceleration is zero.

(b) Because of special relativity, the total energy of a particle moving at speed v cannot be greater than mc^2 .

(c) Every point on a rotating disk of radius r has the same tangential speed.

(d) Non-conservative forces do no work.

Problem 2. An astronaut whose mass is 70 kg holds onto the outer rim of a rotating space station whose radius is 14 m and which takes 30 s to make on complete rotation. What is the magnitude of the force the astronaut must exert in order to hold on? (15 points total)

Problem 3. Starting with Newton's 2nd Law in the radial direction, derive the period of a satellite of mass m orbiting the Earth of mass M_E at a radial distance r from the center of the Earth $(r > R_E)$. Give your answer in terms of r and M_E . Bonus point: What is the name of this law? (15 points total)

Problem 4. In the figure, a 1.50-kg UPS package is held at rest against a spring with a spring constant k = 737 N/m. Initially, the spring is compressed a distance d. When the package is released from rest it slides to the left across a flat frictionless surface, except for a rough patch of width x = 0.0514 m that has a coefficient of kinetic friction between the surface and the package of 0.419. Calculate d such that the package's speed after crossing the rough patch is 2.49 m/s. (15 points total)

~ M

Problem 5. A spring whose stiffness is 800 N/m has a relaxed length of 0.66 m. If the length of the spring changes from 0.55 m to 0.96 m, what is the change in the potential energy of the spring? (15 points total) \times , /

Problem 6. Four protons, each with mass m_p and charge +e are initially held in place at the corners of a square that has sides of length d. What is the speed of each proton when the protons are far apart (assume non-relativistic speeds)? Give your answer in terms of m_p , e, and d. What is the final momentum of the system? (30 points total)

$$T_{otal energy} E = \sum_{j=1}^{4} k_{j} + \sum_{j=1}^{2} V_{jk}$$

$$E = K_{1} + K_{2} + K_{3} + K_{4} + U_{12} + U_{13} + U_{14}$$

$$V_{23} + V_{24} + V_{34}$$

$$K_{j} = \frac{1}{2} m_{p} V^{2}$$

$$U_{12} = \frac{keee}{\sqrt{2r}} , \quad U_{13} = \frac{k_{e}ee}{2r} = V_{24}$$

$$= U_{14} = V_{23} = U_{34}$$

m

$$E = 2 m_{p}v^{2} + 4 k_{e}e^{2} + 2 k_{e}e^{2}$$

$$E_{i} = 4 k_{e}e^{2} + 2 k_{e}e^{2} - 2 k_{e}e^{2}(2 + \frac{1}{\sqrt{2}}) = \frac{2k_{e}e^{2}}{d} \cdot \frac{2k_{e}e^{2}}{\sqrt{2}d} = \frac{2k_{e}e^{2}}{2k_{e}e^{2}} \cdot \frac{2k_{e}e^{2}}{\sqrt{2}d} = \frac{2k_{e}e^{2}}{\sqrt{2}d} = \frac{2k_{e}e^{2}}{\sqrt{2}d} = \frac{2k_{e}e^{2}}{\sqrt{2}d} = \frac{2k_{e}e^{2}}{\sqrt{2}d} = \frac{2k_{e}e^{2}}{\sqrt{2}d} \cdot \frac{2k_{e}e^{2}}{\sqrt{2}d} = \frac{2k$$

Bonus Problem Repeat Problem 6, but take the final speed of the protons to be relativistic. First find the final γ_f , then the final speed v_f . Find a relation for p_f . What initial quantity would we have to adjust to ensure the problem is relativistic? Note that the rest energy of the proton is 938 MeV. (5 points)

$$\begin{aligned} \sup_{s \to 0} \lim_{t \to 0} \sup_{s \to 0} \sup_{t \to 0} \sup_{s \to 0} \lim_{t \to 0} ||_{s \to 0} + ||_{s \to 0} ||_{s \to 0} + ||_{s \to 0} ||_{s \to 0} \\ E = 4||_{s \to 0} + 4||_{12} + 2||_{13} \\ E = 4||_{s \to 0} + 2||_{13} \\ E = \frac{2}{4}||_{s \to 0} ||_{s \to 0} ||_{s \to 0} \\ E = \frac{2}{4}||_{s \to 0} ||_{s \to 0} ||$$

2 375 MeV