3 Vectors and Coordinate
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FIGURE 3.1 The velocity vector ¥ has
both a magnitude and a direction.

Magnitude Direction
of vector of vector

.
A
%:Name of vector

oo The vector is drawn across
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FIGURE 3.2 Displacement vectors.
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3.1 Scalars and Vectors

A quantity that is fully described by a single number (with units) is called a scalar.
Mass, temperature, volume and energy are all scalars. We will often use an algebraic
symbol to represent a scalar quantity. Thus m will represent mass, T temperature, V
volume, E energy, and so on.

Our universe has three dimensions, so some quantities also need a direction for a
full description. If you ask someone for directions to the post office, the reply “Go
three blocks” will not be very helpful. A full description might be, “Go three blocks
south.” A quantity having both a size and a direction is called a vector.

The mathematical term for the length, or size, of a vector is magnitude, so we can
also say that a vector is a quantity having a magnitude and a direction.

FIGURE 3.1 shows that the geometric representation of a vector is an arrow, with
the tail of the arrow (not its tip!) placed at the point where the measurement is made.
An arrow makes a natural representation of a vector because it inherently has both a
length and a direction. As you've already seen, we label vectors by drawing a small
arrow over the letter that represents the vector: 7 for position, ¥ for velocity, @ for
acceleration.

NOTE Although the vector arrow is drawn across the page, from its tail to its tip,
this does not indicate that the vector “stretches” across this distance. Instead, the
vector arrow tells us the value of the vector quantity only at the one point where the
tail of the vector is placed.

The magnitude of a vector can be written using absolute value signs or, more
frequently, as the letter without the arrow. For example, the magnitude of the velocity
vector in Figure 3.1 is v = ]Vl = 5 m/s. This is the object’s speed. The magnitude of
the acceleration vector & is written a. The magnitude of a vector is a scalar. Note
that magnitude of a vector cannot be a negative number; it must be positive or zero,
with appropriate units.

It is important to get in the habit of using the arrow symbol for vectors. If you omit
the vector arrow from the velocity vector ¥ and write only v, then you're referring only
to the object’s speed, not its velocity. The symbols 7 and r, or ¥ and v, do not represent
the same thing.

3.2 Using Vectors

Suppose Sam starts from his front door, walks across the street, and ends up 200 ft
to the northeast of where he started. Sam’s displacement, which we will label S is
shown in FIGURE 3.2a. The displacement vector is a straight-line connection from his
initial to his final position, not necessarily his actual path.

To describe a vector we must specify both its magnitude and its direction. We can write
Sam’s displacement as S = (200 ft, northeast). The magnitude of Sam’s displacement
is $ = | S| =200 ft, the distance between his initial and final points.

Sam’s next-door neighbor Bill also, walks 200 ft to the northeast, starting from his
own front door. Bill’s displacement B (200 ft, northeast) has the same magnitude
and direction as Sam’s displacement S. Because vectors are defined by their magni-
tude and direction, two vectors are equal if they have the same magnitude and
direction. Thus the two displacements in FIGURE 3.2b are equal to each other, and we
can write B = §.

NOTE A vector is unchanged if you move it to a different point on the page as long
as you don’t change its length or the direction it points.



Vector Addition

If you earn $50 on Saturday and $60 on Sunday, your net income for the weekend is
the sum of $50 and $60. With numbers, the word net implies addition. The same is
true with vectors. For example, FIGURE 3.3 shows the displacement of a hiker who first
hikes 4 miles to the east, then 3 miles to the north. The first leg of the hike is described by
the displacement A= (4 mi, east). The second leg of the hike has displacement
= (3 mi, north). Vector C is the net dzsplacemem‘ because 1t describes the net result

of the hiker’s first having dlsplacement A then displacement B.
The net displacement C is an initial displacement A plus a second displacement B or

C=A+8 3.1

The sum of two vectors is called the resultant vector. It’s not hard to show that vector
addition is commutative: A + B =B + A. Thatis, you can add vectors in any order you wish.

«Tactics Box 1.1 on page 6 showed the three-step procedure for adding two vectors,
and it’s highly recommended that you turn back for a qulck review. This tip-to-tail
method for adding vectors, which is used to find C=A+Bin Figure 3.3, is called
graphical addition. Any two vectors of the same type—two velocity vectors or two
force vectors—can be added in exactly the same way.

The graphical method for adding vectors is straightforward, but we need to doa little
geometry to come up with a complete description of the resultant vector C. Vector C
of Figure 3.3 is defmed by its magnitude C and by its direction. Because the three
vectors A B and C form a right triangle, the magnitude, or length, of Cis given by
the Pythagorean theorem:

C=VA+B>=V(4mi)+ (3 mi)’=5mi (3.2)

Notice that Equation 3.2 uses the magnitudes A and B of the vectors A and B. The
angle 6, which is used in Figure 3.3 to describe the direction of C is easily found for
aright triangle:

B 3 mi
6 =tan"!|=| = tan™ =37° 3!
an (A) an (4mi) 3.3)
Altogether, the hiker’s net displacement is C=A+B= (5 mi, 37° north of east).

NOTE Vector mathematics makes extensive use of geometry and trigonometry.
Appendix A, at the end of this book, contains a brief review of these topics.
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EXAMPLE 3.1 | Using graphical addition to find a displacement

A bird flies 100 m due east from a tree, then 50 m northwest (that descr1b1ng C is a bit trickier than the example of the hiker because

is, 45° north of west). What is the bird’s net displacement? A and B are not at right angles. First, we can find the magnitude of
VISUALIZE FIGURE 3.4 shows the two individual displacements, C by using the law of cosines from trigonometry:
whictl'we’ve called A and B. The net displacement is the vector C2= A%+ B? — 2ABcos45°

sum C = A + B, which is found graphically.

FIGURE 3.4 The bird's net displacement is C =4 + B. = 5430 m?

The bird’s net -=--...
displacement is :
C=A+B.

Start 100 m b= cos—l[

soLVE The two displacements are A= (100 m, east) and B=
(50 m, northwest). The net displacement C=A+B is found
by drawing a vector from the initial to the final position. But

= (100 m)?

+ (50 m)? — 2(100 m)(50 m) cos 45°

Thus C = V5430 m?> =74 m. Then a second use of the law of
cosines can determine angle ¢ (the Greek letter phi):

B*=A>+ C?—2ACcos ¢

AZHiGE - B? .
T |

The bird’s net displacement is

C = (74 m, 29° north of east)
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» FIGURE 3.5 Two vectors can be
added using the tip-to-tail rule or
the parallelogram rule.

FIGURE 3.6 The net displacement after
four individual displacements.

Net displacement

o
Dncl

It is often convenient to draw two vectors with their talls together, as shown in
FIGURE 3.5a. To evaluate D + E you could move vector E over to where its tail is
on the tip of D then use the tip-to-tail rule of graphical addition. That gives vector
F= D + E in FIGURE 3.5b. Alternatively, FIGURE 3.5¢ shows that the vector sum D + E
can be found as the diagonal of the parallelogram defined by D and E. This method
for vector addition is called the parallelogram rule of vector addition.

() ®» 3%
- g //o E
E ?
— 'r_‘
D D ; _
What is D + E? Tip-to-tail rule: - Parallelogram rule:”

Find the diagonal of
the parallelogram
formed by D and E

Slide the tail of E
to the tip of D.

Vector addition is easily extended to more than two vectors. FIGURE 3.6 shows the
path of a hiker moving from initial position 0 to position 1, then position 2, then
position 3, and finally arriving at position 4. These four segments are described by
displacement vectors Dl, Dz, D3, and D4 The hiker’s net displacement, an arrow from
position 0 to position 4, is the vector Dnel In this case,

D, =D, +D,+D;+D, (3.4)
The vector sum is found by using the tip-to-tail method three times in succession.

-

STOP TO THINK 3.1 Which figure shows Zl ot 1_4:2 + A5?

\ @
(a) (b) (c) (d) (e)

More Vector Mathematics

In addition to adding vectors, we will need to subtract vectors (« Tactics Box 1.2 on
page 7), multiply vectors by scalars, and understand how to interpret the negative of a
vector. These operations are illustrated in FIGURE 3.7.

FIGURE 3.7 Working with vectors.

The length of B is “stretched”
bv the factor c. Th.n is, B = cA.

B=cA=

A + (=A) = 0. The tip of —A
returns to the starting point.

.‘._ =] —
A Vector —A is
o % ®.... equal in magnitude

(cA, 0) et —A but opposite in
direction to A.

K/
24

i -
B points in the same direction as A.

Multiplication by a scalar

Z
é

Vector subtf'action:_)What is Z ot 6?
Write it as A + (—C) and add!

The zero vector 0 has zero length

The negative of a vector

13

Tip-to-tail subtraction using —C

Multiplication by a negative scalar

i-¢

M

= .
Parallelogram subtraction using —C
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I

|
EXAMPLE 3.2 |
Carolyn drives her car north at 30 km/h for 1 hour, east at 60 km/h FIGURE 3.8 The net displacement is the vector sum
for 2 hours, then north at 50 km/h for 1 hour. What is Carolyn’s net A7 = A + AR + AR

Velocity and displacement

displacement? N End
soLvE Chapter 1 defined average velocity as é A.k
A7,
A_’ net A—D
v=-C "1 |80km
At = >
: b5l g it = A7, -
so the displacement A7 during the time interval Az is A7 = (Az)v. "W i
This is multiplication of the vector ¥ by the scalar Az. Carolyn’s Starts ey
velocity during the first hour is ¥, = (30 km/h, north), so her 120 km

displacement during this interval is : 19
This addition of the three vectors is shown in FIGURE 3.8, using the

A7, = (1 hour) (30 km/h, north) = (30 km, north) tip-to-tail method. A7, stretches from Carolyn’s initial position to
her final position. The magnitude of her net displacement is found
Similarly, using the Pythagorean theorem:
A7, = (2 hours) (60 km/h, east) = (120 km, east) Foee = V(120 km)? + (80 km)? = 144 km

A7 = (1 hour)(50 km/h, north) = (50 km, north) The direction of A7, is described by angle 8, which is

In this case, multiplication by a scalar changes not only the length s
of the vector but also its units, from km/h to km. The direction, 0= tan_'[ 150kl = 34°
however, is unchanged. Carolyn’s net displacement is i
Thus Carolyn’s net displacement is A7, = (144 km, 34° north

AP = A7, + AT, + AT of east).

STOP TO THINK 3.2 Which figure shows 24 — B?

£ //._,\

(a) (b) (©) (d) (e)

3.3 Coordinate Systems and
Vector Components

Vectors do not require a coordinate system. We can add and subtract vectors graphically,
and we will do so frequently to clarify our understanding of a situation. But the graphical
addition of vectors is not an especially good way to find quantitative results. In this
section we will introduce a coordinate representation of vectors that will be the basis
of an easier method for doing vector calculations.

Coordinate Systems

The world does not come with a coordinate system attached to it. A coordinate system
is an artificially imposed grid that you place on a problem in order to make quantitative
measurements. You are free to choose:

A GPS uses satellite signals to find your
# Where to place the origin, and position in the earth’s coordinate system

© How to orient the axes. with amazing accuracy.

Different problem solvers may choose to use different coordinate systems; that is
perfectly acceptable. However, some coordinate systems will make a problem easier
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FIGURE 3.9 A conventional xy-coordinate
system and the quadrants of the
xy-plane.

11 I
90°

111 v

ks
FIGURE 3.10 Component vectors A, and
A are drawn parallel to  the coordmate
axes such that A = A + A

y

| j .

The y-component  The x-component
vector is parallel  vector is parallel
to the y-axis. to the x-axis.

to solve. Part of our goal is to learn how to choose an appropriate coordinate system
for each problem.

FIGURE 3.9 shows the xy-coordinate system we will use in this book. The placement
of the axes is not entirely arbitrary. By convention, the positive y-axis is located 90°
counterclockwise (ccw) from the positive x-axis. Figure 3.9 also identifies the four
quadrants of the coordinate system, I through IV.

Coordinate axes have a positive end and a negative end, separated by zero at the
origin where the two axes cross. When you draw a coordinate system, it is important
to label the axes. This is done by placing x and y labels at the positive ends of the axes,
as in Figure 3.9. The purpose of the labels is twofold:

' To identify which axis is which, and
To identify the positive ends of the axes.

This will be important when you need to determine whether the quantities in a problem
should be assigned positive or negative values.

Component Vectors

FIGURE 3.10 shows a vector A and an xy-coordinate system that we’ve chosen. Once the
directions of the axes are known, we can defme two new vectors parallel to the axes
that we call the component vectors of A. You can see, using the parallelogram
rule, that A is the vector sum of the two component vectors:

A=4,+4, (3.5)

In essence, we have broken vector 4 into two perpendicular vectors that are > parallel
to the coordinate axes. This process is called the decomposition of vector A into its
component vectors.

NOTE It is not necessary for the tail of A to be at the origin. A]l we need to know
is the orientation of the coordinate system so that we can draw A and A y parallel
to the axes.

Components

You learned in Chapter@ I and 2 to give the kinematic variable v, a positive s1gn if the
velocity vector V points toward the positive end of the x-axis, a negative sign if ¥ points in
the negative x—dlrectlon We need to extend this idea to vectors in general.

Suppose vector A has been decomposed into component vectors A and A, , parallel
to the coordinate axes. We can describe each component vector with a smgle number
called the component. The x-component and y-component of vector A denoted A,
and A,, are determined as follows:

i

Determining the components of a vector

© The absolute value |Ar| of the x-component A, is the magnitude of the |
component vector A .. i

(2] The sign of A, is positive if A , boints in the positive x-direction (right), negative
if A points in the negative x-direction (left).

© The y-component A is determined similarly.

Exercises 10-18

In other words, the component A, tells us two things: how big A is and, with its sign,
which end of the axis A . points toward. FIGURE 3.11 shows three examples of determining
the components of a vector.
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FIGURE 3.11 Determining the components of a vector. g
B, points in the

5 y (m) y (m) positive y-direction,
A, points in oy B soB,=+2m.
the positive 3 BE3 a2 e
y-direction, so \ %4 ----------
A=+2m. 27 2 Q
ks B, «@}w»m:»r
— —————x (m) — :'.' ——r——x ()
2= liiud 3 -2 -1 | Bl
=11 =14 %
A, points in the positive B, points in the negative
e -2 =-2m.

<71 x-direction, so B,

x-direction, so A, = +3 m.

NOTE Beware of the somewhat confusing terminology. Z_\. and A’y are called
component vectors, whereas A, and A are simply called components. The components
A, and A, are just numbers (with units), so make sure you do not put arrow symbols
over the components.

We will frequently need to decompose a vector into its components. We will also
need to “reassemble” a vector from its components. In other words, we need to move
back and forth between the geometric and the component representations of a vector.
FIGURE 3.12 shows how this is done.

The angle is defined differently. In this
example, the magnitude and direction are

B=VB!+B} ¢ =tan”' (B,/|B,))

The magnitude and direction of A are found
from the components. In this example,
A=VAZ+A}  O=tn"' (AJ/A)

B

B,=Bsing

Minus signs must be inserted manually,
depending on the vector’s direction.

g LS
The components of A are found from the
magnitude and direction.

Each decomposition requires that you pay close attention to the direction in which
the vector points and the angles that are defined.

5 If acomponent vector points left (or down), you must manually insert a minus sign
in front of the component, as was done for B, in Figure 3.12.

© The role of sines and cosines can be reversed, depending upon which angle is used
to define the direction. Compare A, and B..

® The angle used to define direction is almost always between 0° and 90°, so you must
take the inverse tangent of a positive number. Use absolute values of the components,
as was done to find angle ¢ (Greek phi) in Figure 3.12.

EXAMPLE 3.3

Seen from above, a hummingbird’s acceleration is (6.0 m/ s2, 30° south
of west). Find the x- and y-components of the acceleration vector @. Y

Finding the components of an acceleration vector

a, is negative.

The y-compo- ¥ (m)
nent of Cis
C,=-3m.

34

oy

71

The x-component
Sof Cis C,=+4m.

< FIGURE 3.12 Moving between the
geometric representation and the
component representation.

VISUALIZE It’s important to draw vectors. FIGURE 3.13 establishes
a map-like coordinate system with the x-axis pointing east and the
y-axis north. Vector 4 is then decomposed into components parallel
to the axes. Notice that the axes are “acceleration axes” with units of
acceleration, not xy-axes, because we’re measuring an acceleration

vector.

» FIGURE 3.13 Decomposition of a.

¥y «, is negative.

Continued
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SoLVE The acceleration vector points to the left (negative x-direction)
and down (negative y-direction), so the components «, and a, are
both negative:

a, =—acos30° = —(6.0 m/s?) cos 30° = —5.2 m/s>
a, =—asin30° = —(6.0 m/s?) sin30° = —3.0 m/s>

AssEss The units of a, and a, are the same as the units of vector a.
Notice that we had to insert the minus signs manually by observing
that the vector points left and down.

EXAMPLE 3.4 | Finding the direction of motion

FIGURE 3.14 shows a car’s velocity vector V. Determine the car’s
speed and direction of motion.

FIGURE 3.14 The velocity vector ¥ of Example 3.4.

v, (m/s)

v, (m/s)

VISUALIZE FIGURE 3.15 shows the components v, and vy and de-
fines an angle 6 with which we can specify the direction of motion.
SOLVE We can read the components of ¥ directly from the axes:
v, =—6.0m/s and v, = 4.0 m/s. Notice that v, is negative. This is
enough information to find the car’s speed v, which is the magnitude
of ¥:

v=Vi2+ v =V/(=6.0 m/s)? + (4.0 m/s)> = 7.2 m/s

FIGURE 3.15 Decomposition of V.

vy (m/s)

Magnitude~”
v=Vp2+?

Gl V, (M/5)
-6 / -4 -2
v,=—6.0m/s Direction § = tan"'(v, /|n])

From trigonometry, angle 6 is

v, 4.0 m/s
=tan!|——| = tan™" =34°
Ot (MJ % (6.0m/5)

The absolute value signs are necessary because v, is a negative
number. The velocity vector ¥ can be written in terms of the speed
and the direction of motion as

V = (7.2 m/s, 34° above the negative x-axis)

STOP TO THINK 3.3 What are the x- and y-components C, and C, of vector o

¥ (cm)
2
C 1

. T . — X (cm)
—4 -3 -2 -1 1
-1

3.4 Unit Vectors and Vector Algebra

FIGURE 3.16 The unit vectors 7 and 7.

2] The unit vectors have
magnitude 1, no units, and
point in the + x-direction
14 and + y-direction.

The vectors (1, +x-direction) and (1, +y-direction), shown in FIGURE 3.16, have some
interesting and useful properties. Each has a magnitude of 1, has no units, and is parallel
to a coordinate axis. A vector with these properties is called a unit vector. These unit
vectors have the special symbols

7 = (1, positive x-direction)
7= (1, positive y-direction)

The notation 7 (read “i hat™) and  (read “j hat”) indicates a unit vector with a magnitude
of 1. Recall that the symbol = means “is defined as.”

Unit vectors establish the directions of the positive axes of the coordinate system.
Our choice of a coordinate system may be arbitrary, but once we decide to place a
coordinate system on a problem we need something to tell us “That direction is the
positive x-direction.” This is what the unit vectors do.



The umt vectors provide a useful way to write component vectors. The component
vector A is the piece of vector A that is parallel to the x-axis. Similarly, A is parallel
to the y-axis. Because, by definition, the vector 7 points along the x-axis and j 7 points
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FIGURE 3.17, The decomposition
of vector Ais AT+ A ].

y

along the y-axis, we can write o
& 4 A=A,
de et (3.6) \
A, =Ay]
Equations 3.6 separate each component vector into a length and a direction. The full N
decomposition of vector A can then be written il e i
- - - - = o ~ ’i F
A=A, + A}’ At A)’] @.7) Unit vectors Vector A7 has length

=
FIGURE 3.17 shows how the unit vectors and the components fit together to form vector A.

identify the x-
and y-directions.

A, and points in the
direction of z.

NOTE In three dlmenswns the unit vector along the +z-direction is called k and
to describe vector A we would include an additional component vector A =A, k

i

EXAMPLE 3.5 | Run rabbit run!

A rabbit, escaping a fox, runs 40.0° north of west at 10.0 m/s. A
coordinate system is established with the positive x-axis to the east
and the positive y-axis to the north. Write the rabbit’s velocity in
terms of components and unit vectors.

VISUALIZE FIGURE 3.18 shows the rabbit’s velocity vector and the
coordinate axes. We're showing a velocity vector, so the axes are
labeled v, and v, rather than x and y.

FIGURE 3.18 The velocity vector ¥ is decomposed into
components v, and v,.

i

v=10.0m/s

N
14

|
I
|
v, = vsin40.0°)
1 40.0°

v, =—v c0940 0°

soLVE 10.0 m/s is the rabbit’s speed, not its velocity. The velocity,
which includes directional information, is

= (10.0 m/s, 40.0° north of west)

Vector ¥ points to the left and up, so the components v, and vy
are negative and positive, respectively. The components are

—(10.0 m/s) cos 40.0° = —7.66 m/s
vy = +(10.0 m/s) sin 40.0° = 6.43 m/s
With v, and v, now known, the rabbit’s velocity vector is
V=v1+v]=(-7.660 +6.43]7) m/s

Notice that we’ve pulled the units to the end, rather than writing
them with each component.

AssEss Notice that the minus sign for v, was inserted manually.
Signs don’t occur automatically; you have to set them after
checking the vector’s direction.

Vector Math

You learned in Section 3.2 how to add vectors graphically, but it is a tedious problem
in geometry and trigonometry to find precise values for the magnitude and direction
of the resultant. The addition and subtraction of vectors become much easier if we use
components and unit vectors. Bk e et s

To see this, let’s evaluate the vector sum D = A + B + C. To begin, write this sum
in terms of the components of each vector:

D=Di+Dj=A+B+C
] (3.8)
—(As i AT (BB 6 nEHE )

We can group together all the x-components and all the y-components on the right
side, in which case Equation 3.8 is

(D_‘.)i_ F (D) ] =(A FB FC )t + (A B T C )] 3.9

Comparing the x- and y-components on the left and right sides of Equation 3.9, we find:

D,=A,+B,+C,

(3.10)
D,=A,+B,+C,
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Stated in words, Equation 3.10 says that we can perform vector addition by adding the
x-components of the individual vectors to give the x-component of the resultant and
by adding the y-components of the individual vectors to give the y-component of the

resultant. This method of vector addition is called algebraic addition.

EXAMPLE 3.6 |

Example 3.1 was about a bird that flew 100 m to the east, then 50 m
to the northwest. Use the algebraic addition of vectors to find the
bird’s net displacement.

VISUALIZE FIGURE 3.19 shows displacement vectors A= (100 m,
east) and B (50 m, northwest). We draw vectors tip-to-tail to
add them graphically, but it’s usually easier to draw them all from
the origin if we are going to use algebraic addition.

- - -
FIGURE 3.19 The net displacementis C =A + B.

The net displacement C=A + Bis drawn

Using algebraic addition to find a displacement

Notice that vector quantities must 1nclude units. Also notice, as
you wou]d expect from the figure, that Bhasa negative x-component.
Adding Aand B by components gives

C=A +B =100 m+ (~3537 +353}) m
= (100 m —35.3 m)7 + (35.3 m)] = (64.77 +35.3]) m
This would be a perfectly acceptable answer for many purposes.

However, we need to calculate the magnitude and direction of C if
we want to compare this result to our earlier answer. The magnitude
-

Y according to the parallelogram rule.

] 100 m

SOLVE To add the vectors algebraically we must know their com-
ponents. From the figure these are seen to be

A=1007m

B = (=50 cos 45°7 + 50 sin 45°7) m = (—35.37 + 35.3}) m

FIGURE 3.20 A coordinate system with
tilted axes.

5
The components of C are found
with respect to the tilted axes.

A . A A
¢ - Unit vectors z and J
define the x- and y-axes.

of Cis
C=VC2+C>=V(647m)>+ (353 m)>=T74m
The angle ¢, as defined in Figure 3.19, is
C, 353 m
=tan”![——| = tan™! =20°
e (|c_‘_|) ; (64.7 m

Thus C = (74 m, 29° north of west), in perfect agreement with
Example 3.1.

Vector subtraction and the multiplication of a vector by a scalar, using components,
are very much like vector addition. To find R=P- Q we would compute

R.=P.—Q,
=P~ 0 G.11)
R,=P,— 0,
Similarly, T = ¢S would be
T‘ —
= C5 3.12)
Ty=cSy

In other words, a vector equation is interpreted as meaning: Equate the x-components
on both sides of the equals sign, then equate the y-components, and then the z-components.
Vector notation allows us to write these three equations in a much more compact form.

Tilted Axes and Arbitrary Directions

As we’ve noted, the coordinate system is entirely your choice. It is a grid that you impose
on the problem in a manner that will make the problem easiest to solve. As you’ve
already seen in Chapter 2, it is often convenient to tilt the axes of the coordinate system,
such as those shown in FIGURE 3.20. The axes are perpendicular, and the y-axis is
oriented correctly with respect to the x-axis, so this is a legitimate coordinate system.
There is no requirement that the x-axis has to be horizontal.

Fmdmg components with tilted axes is no harder than what we have done so far.
Vector C in Figure 3.20 can be decomposed into C= C,i+ C,j:where C.= Ccos 0
and C, = Csin@. Note that the unit vectors 7 and } correspond to the axes, not to
“horizontal” and “vertical,” so they are also tilted.

Tilted axes are useful if you need to determine component vectors “parallel to” and
“perpendicular to” an arbitrary line or surface. This is illustrated in the following example.
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EXAMPLE 3.7 § Muscle and bone

The deltoid—the rounded muscle across the top of your upper
arm—allows you to lift your arm away from your side. It does so
by pulling on an attachment point on the humerus, the upper arm
bone, at an angle of 15° with respect to the humerus. If you hold
your arm at an angle 30° below horizontal, the deltoid must pull
with a force of 720 N to support the weight of your arm, as shown
in FIGURE 3.21a. (You'll learn in Chapter 5 that force is a vector

FIGURE 3.21 Finding the components of force parallel and
perpendicular to the humerus.

(a) (b) i
720N F

Deltoid muscle

quantity measured in units of newtons, abbreviated N.) What are
the components of the muscle force parallel to and perpendicular
to the bone?

VISUALIZE FIGURE 3.21b shows a tilted coordmate system with
the x-axis parallel to the humerus. The force F is shown 15°
from the x-axis. The component of force parallel to the bone,
which we can denote F, is equivalent to the x-component:
F, = F,. Similarly, the component of force perpendicular to the
bone is F, = F,.

soLVE From the geometry of Figure 3.21b, we see that

Fy=Fcos15°= (720 N)cos 15° = 695 N
F, =Fsin15°= (720 N)sin15° = 186 N

Assess The muscle pulls nearly parallel to the bone, so we expected
Fy = 720 N and F, << Fy. Thus our results seem reasonable.

STOP TO THINK 3.4 Angle ¢ that specifies the direction of
C is given by

o tan" (| €gl/Cy) b. tan™(C./|C,])
c. tan”'(|C,|/|Cy]) d. tan”'(|C, |/C;)
e. tan”'(C,/|C,|) f. tan”!(|C,|/|C.|)

y

g
CHALLENGE EXAMPLE 3.8 | Finding the net force

FIGURE 3.22 shows three forces acting at one point. What is the net
force F“e( = F, o+ Fz + F~.

VISUALIZE Figure 3.22 shows the forces and a tilted coordinate
system.

i =3 - = = i
soLVE The vector equation F,, = F + F, + F;is really two simul-
taneous equations:

(Fnel),\‘ o Fl.\' g Flr it F3.\'
(Foet)y = Fiy + Fo + Fs,
The components of the forces are determined with respect to the
axes. Thus
F,, = F,cos45° = (50 N)cos45° =35 N
Fy, = F,sin45° = (50 N)sin45° =35 N
F’) is ecasier. It is pointing along the y-ax1s so F,,=0N and
Fpy =20 N. To find the components of 1"3, we need to recogn17e—

because h points straight down—that the angle between F 3 and
the x-axis is 75°. Thus

Fs, = F3c0875°= (57 N)cos75° = 1SN
F3,=—F;sin75° =—(57 N)sin75° =—55 N

FIGURE 3.22 Three forces.

\ J

The minus sign in F3, is critical, and it appears not from some formula
but because we recognized—ifrom the figure—that the y-component
of F 1, points in the —y-direction. Combining the pieces, we have

(Foe)s =35N+0N+15N=50N
(Foa)y=35N+20N+(-55N)=0N
Thus the net force is Fnel = 507 N. It points along the x-axis of the
tilted coordinate system.

Assess Notice that all work was done with reference to the axes
of the coordinate system, not with respect to vertical or horizontal.
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The goals of Chapter 3 have been to learn how vectors are represented and used.

IMPORTANT CONCEPTS

A vector is a quantity described by both a magnitude and a direction. Unit Vectors

/ Unit vectors have magnitude 1
Do and no units. Unit vectors 7 and J

The vector 5 . define the directions of the x- and
describes the y-axes.
situation at A The length or magnitude is

this point. denoted A. Magnitude is a scalar.

Components

The components A, and A, are
the magnitudes of the component
vectors A, and A, and a plus or
, minus sign to show whether the
! \ component vector points toward
A, = Acosf A=VA2Z+A? ¥y the positive epd or the negative
; : A.<0 | A>0 end of the axis.

A 3 L =1

A,=Asinf 0 =tan"'(A,/A,) A>0 | A,>0

The component vectors are parallel to the x- and y-axes:

A=A, +4,=A1+A]

In the figure at the right, for example:

» Minus signs need to be included if the vector points
down or left.

Working Graphically
Addition 3 Negative Subtraction Multiplication
A+B - . p
i e
z B| |-B B -B
A
A-B

Working Algebraically
C,=24A,+B,

C,=24,+B,
The magnitude of C is then C = V€2 + C,? and its direction is found using tan”".

Vector calculations are done component by component: C = 24 + B means {

ATION

TERMS AND NOT

scalar resultant vector quadrants component
vector graphical addition component vector unit vector, 7 or ]
=

magnitude zero vector, 0 decomposition algebraic addition
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