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k is the spring 
constant, units of N/m, 
different for different 
materials, number of 
coils

❑Consider a spring, which we apply a force FA to 
either stretch it or compress it 

The Spring



From Newton’s 3rd Law, the spring exerts a force 
that is equal in magnitude, but opposite in 
direction

Hooke’s Law for the restoring 
force of an ideal spring. (It is 
a conservative force.) 

kxFs −=

Five identical springs, each with stiffness 390 N/
m, are attached in parallel (that is side-by-side) 
to hold up a heavy weight. If these springs were 
replaced by an equivalent single spring, what 
should be the stiffness of this single spring?

Chapter 4, problem P29



Oscillatory Motion
❑ We continue our studies of mechanics, but 
combine the concepts of translational and rotational 
motion.  

❑ In particular, we will re-examine the restoring 
force of the spring (later its potential energy).  

❑ We will consider the motion of a mass, attached 
to the spring, about its equilibrium position.  

❑ This type of  motion is applicable to many other 
kinds of situations: pendulum, atoms, planets, ... 



Simple Harmonic Motion
❑ If we add a mass m to the end of the (massless) 
spring, stretch it to a displacement x0, and release 
it. The spring-mass system will oscillate from x0 to 
–x0 and back.

0 x0-x0

m

k

Without friction and air 
resistance, the 
oscillation would 
continue indefinitely

❑ This is Simple Harmonic Motion (SHM) 

❑ SHM has a maximum magnitude of |x0|=A,  
called the Amplitude



❑ One way to understand SHM is to consider the 
circular motion of a particle and rotational 
kinematics (The Reference Circle) 

❑ The particle travels on a circle of radius r=A with 
the line from the center to the particle making an 
angle θ with respect to the x-axis at some instant in 
time 

• Now, project this 2D motion onto a 1D axis
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Therefore,

❑ x is the displacement for 
SHM, which includes the 
motion of a spring
❑ SHM is also called sinusoidal motion 

❑ xmax=A=x0=amplitude of the motion (maximum) 

• ω is the angular frequency (speed) in rad/s. It 
remains constant during the motion.



❑ ω and the period T are related      
         

• Define the frequency          
                 
  

•          

• As an example, the alternating current (AC) of 
electricity in the US has a frequency of 60 Hz 

• Now, lets consider the velocity for SHM, again 
using the Reference circle
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❑ Amplitude of the velocity 
is         
   

❑ Acceleration of SHM
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❑ The amplitude of the acceleration is   

❑ Summary of SHM
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Example Problem
Given an amplitude of 0.500 m and a frequency of 
2.00 Hz for an object undergoing simple harmonic 
motion, determine (a) the displacement, (b) the 
velocity, and (c) the acceleration at time 0.0500 s. 

Solution: 

Given: A=0.500 m, f=2.00 Hz, t=0.0500 s. 

(a) rad) 8m)cos(0.62 500.0()cos(
rad 0.628rad 0.200     
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Frequency of Vibration 
❑ Apply Newton’s 2nd Law to the spring-mass 
system (neglect friction and air resistance)
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Consider x-direction only 

Substitute x and a for SHM

Angular frequency of vibration for a 
spring with spring constant k and 
attached mass m. Spring is assumed 
to be massless.
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❑ This last equation can be used to determine k 
by measuring T and m          
            

❑Note that ω (f  or T) does not depend on the 
amplitude of the motion A 

• Can also arrive at these equations by 
considering derivatives
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Frequency of 
vibration 

Period of 
vibration



The Simple Pendulum

❑ An application of Simple Harmonic Motion 

❑ A mass m at the end of a massless rod of 
length L 

❑ There is a restoring force which                    
acts to restore the mass to θ=0       
      

• Compare to the spring Fs=-kx 

• The pendulum does not                                   
display SHM
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❑ But for very small θ (rad), we can make the 
approximation (θ<0.5 rad or about 25°)   → 
simple pendulum approximation
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Arc length

Looks like spring 
force

Like the spring 
constant

This is SHM

❑ Now, consider the angular frequency of the spring
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frequency

• With this ω, the same equations expressing the 
displacement x, v, and a for the spring can be used 
for the simple pendulum, as long as θ is small 

• For θ large, the SHM equations (in terms of sin 
and cos) are no longer valid → more complicated 
functions are needed (which we will not consider)  

• A pendulum does not have to be a point-particle


