The Spring

Consider a spring, which we apply a force F_A to either stretch it or compress it

k is the spring constant, units of N/m, different for different materials, number of coils

 $F_{A} = kx$

From Newton's 3rd Law, the spring exerts a force that is equal in magnitude, but opposite in direction

 $F_s = -kx$ Hooke's Law for the restoring s = -kx force of an ideal spring. (It is a conservative force.)

Chapter 4, problem P29

Five identical springs, each with stiffness 390 N/ m, are attached in parallel (that is side-by-side) to hold up a heavy weight. If these springs were replaced by an equivalent single spring, what should be the stiffness of this single spring?

Oscillatory Motion

We continue our studies of mechanics, but combine the concepts of translational and rotational motion.

□ In particular, we will re-examine the restoring force of the spring (later its potential energy).

□ We will consider the motion of a mass, attached to the spring, about its equilibrium position.

□ This type of motion is applicable to many other kinds of situations: pendulum, atoms, planets, ...

Simple Harmonic Motion If we add a mass m to the end of the (massless) spring, stretch it to a displacement x_0 , and release it. The spring-mass system will oscillate from x_0 to $-x_0$ and back.

Without friction and air resistance, the oscillation would continue indefinitely

□ This is <u>Simple Harmonic Motion</u> (SHM)

□ SHM has a maximum magnitude of $|x_0| = A$, called the Amplitude

One way to understand SHM is to consider the circular motion of a particle and rotational kinematics (The Reference Circle)

The particle travels on a circle of radius r=A with the line from the center to the particle making an angle θ with respect to the x-axis at some instant in time

Now, project this 2D motion onto a 1D axis

Therefore,

 $x = A\cos(\omega t)$

x is the displacement for SHM, which includes the motion of a spring

SHM is also called sinusoidal motion

 $\Box x_{max} = A = x_0 = amplitude of the motion (maximum)$

x=0

x = A

Χ

x = -A

• ω is the angular frequency (speed) in rad/s. It remains constant during the motion.

$\Box \omega$ and the period T are related

- Define the frequency
 - $f = \frac{\# \text{ cycles}}{\sec} = \frac{1}{T}$ Units of 1/s = Hertz (Hz) $\omega = \frac{2\pi}{T} = 2\pi f$ Relates frequency and angular frequency

2π

ω

- As an example, the alternating current (AC) of electricity in the US has a frequency of 60 Hz
- Now, lets consider the velocity for SHM, again using the Reference circle

Example Problem Given an amplitude of 0.500 m and a frequency of 2.00 Hz for an object undergoing simple harmonic motion, determine (a) the displacement, (b) the velocity, and (c) the acceleration at time 0.0500 s. Solution:

Given: A=0.500 m, f=2.00 Hz, t=0.0500 s. $\omega = 2\pi f = 2\pi (2.00 \text{ Hz}) = 4.00\pi \text{ rad/s}$ $\omega t = (4.00\pi \text{ rad/s})(0.0500 \text{ s})$ $= 0.200\pi \text{ rad} = 0.628 \text{ rad}$ (a) $x = A\cos(\omega t) = (0.500 \text{ m})\cos(0.628 \text{ rad})$

$x = 0.405 \,\mathrm{m}$ $v = -A\omega \sin(\omega t)$ $v = -(0.500 \text{ m})(4\pi \text{ rad/s})\sin(0.628 \text{ rad})$ v = -3.69 m/s $a = A\omega^2 \cos(\omega t)$ $a = -(0.500 \text{ m})(4\pi \text{ rad/s})^2 \cos(0.628 \text{ rad})$ $a = -63.9 \text{ m/s}^2$

Frequency of Vibration

□ Apply Newton's 2nd Law to the spring-mass system (neglect friction and air resistance)

 $\sum_{x} F_{x} = ma_{x}$ Consider x-direction only $F_{s} = -kx = ma_{x}$ Substitute x and a for SHM $-k[A\cos(\omega t)] = m[-A\omega^{2}\cos(\omega t)]$ $k = m\omega^{2}$

k

Angular frequency of vibration for a spring with spring constant k and attached mass m. Spring is assumed to be massless.

This last equation can be used to determine k by measuring T and m

$$T^{2} = 4\pi^{2} \frac{m}{k} \Longrightarrow k = 4\pi^{2} \frac{m}{T^{2}}$$

 \Box Note that ω (f or T) does not depend on the amplitude of the motion A

 Can also arrive at these equations by considering derivatives

The Simple Pendulum

- An application of Simple Harmonic Motion
- A mass m at the end of a massless rod of length L

Ħ

mgsinθ

m

- □ There is a <u>restoring force</u> which acts to restore the mass to θ =0
 - $F = -mg\sin\theta$
- Compare to the spring $F_s = -kx$
- The pendulum does not display SHM

□ Now, consider the angular frequency of the spring

• With this ω , the same equations expressing the displacement x, v, and a for the spring can be used for the simple pendulum, as long as θ is small

• For θ large, the SHM equations (in terms of sin and cos) are no longer valid \rightarrow more complicated functions are needed (which we will not consider)

A pendulum does not have to be a point-particle