Chapter 3: Fundamental Interactions Newton's Third Law of Motion

 The first two laws deal with a single object and the net forces applied to it
 but not what is applying the force(s)

□ <u>The third law</u> deals with how two objects interact with each other

□ Whenever one object exerts a force on a second object, the second object exerts a force of the same magnitude, but opposite direction, on the first object

Astronaut, m_a Space station, m_s Third law says: force astronaut applies to space station, \mathbf{F}_{s} must be equal, but opposite to force the space station applies to astronaut, \mathbf{F}_{a} FBD $\vec{F}_{a} = -\vec{F}_{a} = \vec{F}$ $\vec{F}_a = m_a \vec{a}_a \Longrightarrow \vec{a}_a = \vec{F}_a / m_a = -\vec{F} / m_a$

 $\vec{F}_{s} = m_{s}\vec{a}_{s} \Rightarrow \vec{a}_{s} = \vec{F}_{s}/m_{s} = \vec{F}/m_{s}$

Since $m_a << m_a \Rightarrow a_a >> a_a$

Fundamental Types of Forces

- 1. Gravitational
- 2. Electromagnetic (electric and magnetic)
- 3. Weak Nuclear
- 4. Strong Nuclear
 - We will only ``consider" the first two in this course (mostly)

Electroweak

- <u>Standard Model</u> combination of weak nuclear, strong nuclear, and electromagnetic gives current theory of matter in terms of quarks, leptons, and neutrinos
- <u>Physicist's Dream</u> to combine 1-4 in a theory of everything

Universal Force due to Gravity

- Every object in the Universe exerts an attractive force on all other objects
- □ The force is directed along the line separating two objects
- □ Because of the 3rd law, the force exerted by object 1 on 2, has the same magnitude, but opposite direction, as the force exerted on 2 by 1

where

And G = Universal Gravitational Constant = $6.67259 \times 10^{-11} \text{ N m}^2/\text{kg}^2$

 F_{1}

• G is a constant everywhere in the Universe, therefore it is a fundamental constant

 Gm_1m_2

□ *g* is not a fundamental constant, but we can calculate it. Compare:

- \Box Weight \neq mass
- Weight the force exerted on an object by the Earth's gravity

 $F_G = mg = W$

- Mass is intrinsic to an object, weight is not
- From previous page, W=m(GM_E/R_E²)
 your weight would be different on the moon
- Gravity is a very weak force, need massive objects

Example Problem (difficult!)

Two particles are located on the x-axis. Particle 1 has a mass of m and is at the origin. Particle 2 has a mass of 2m and is at x=+L. A third particle is placed between particles 1 and 2. Where on the x-axis should the third particle be located so that the magnitude of the gravitational force on both particles 1 and 2 doubles? Express your answer in terms of L.

Solution:

Principle – universal gravitation (no Earth), $F_{12}=Gm_1m_2/r^2$

Strategy – compute forces with particles 1 and 2, then compute forces with three particles

