Chapter 7 Internal Energy
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Work done by a spring

- We know that work equals force times
displacement

Hooke’s Law for the restoring
Eg = —kx force of an ideal spring. (It is
a conservative force.)
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" But the force is not constant
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Example Problem

A block (m = 1.7 kg) and a spring (k = 310 N/m)
are on a frictionless incline (6 = 30°). The spring is

compressed

unstretched
What is the

oy X; = 0.31 m relative to its

nosition at x = 0 and then released.
speed of the block when the spring is

still compressed by x: = 0.14 m?




SIS

N, \6
Given: m=1.7 kg, k=310 N/m, 6=30°, x=0.31 m,
X,=0.14 m, frictionless

Method: no friction, so we can use conservation of
energy

E=Lmv’ +mgh+Lkx’

Initially .
v. =0,h =Xx;s1n0O

L ! 1 Jye2
E. = mgx, sinb + = kx;




Finally i, = x,smB, tind v,
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= mgx, sin0 + - kx;
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V= \/ 2(9.8)(0.31-0.14)sin 30" + —

N

v, =~/1.666+13.95 =

3.95m

310
1.7

(0.312 = 0.14%)

Interesting to plot the potential energies
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Molecular potentials (two atoms)
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Morse potential
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But at large r, Morse
potential does poorly
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Example problem

@ If it takes 4.00 J of work to stretch a
Hooke’s law spring 10.0 cm from its
unstretched length, determine the extra

work required to stretch it an additional
10.0 cm.
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. Conservative and Non-conservative Forces

1 Conservative Force: a force for which the work
it does on an object does not depend on the
path. Gravity is an example.

Jd We know we can obtain the work with the
work integral. 7
T = f Fdx=W
X

4 If the force is conservative, then W=W_and
this work can be related to the change in

potential energy W = f’ d F dx=-AU
C X
X
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mg s h ~ S 3
S A - Y ¥ mg
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A W =Fcoshs=mgh
. . h
8 W =(mgsin0)s = (mgsinb )—— = mgh
sino

c W =mgh

- Non-conservative Force - a force for which the
work done depends on the path - friction

- air resistan




@ If the force is conservative, we can find the
potential energy due to the force

usually convenient to ta

¥ U, (x) = f Fdx+U (x)

ke U(x)=0

@Or if we know U(Xx) and

the force is

conservative, we can obtain F

dU(x)=-F.dx=F, = -

It is

dU (x)

dx

@The X-component of a conservative force equals
the negative derivative of the potential energy

with respect to x




If both conservative and non-conservative forces
act on an object, the work-energy theorem is

N

) odified_W ~W,+Wy. =K, -K,
Wye =K, -K, =W,

total
For the case of gravity
W,=W.=mg(y,-y,)
Wye =K, -K,—mg(y,-y,)
Wye =K, =K, —mgy, +mgy,
W..=AK +AU
=K, -K,+U,-U,
=(K,+U,)-(K,+U,)




WNC —= Ef _Ei =Wsurr

3 If no net non-conservative forces

W'—O:>E =k =F

- Then, conservatlon of mechanlcal energy holds

AK = -AU

Crate on Incline Revisited




w, =0
W, =mgsmb s =mgh=W,

i W, =-wmgcost s =W,

d The crate starts from rest, v.=0

K, =0,E =U,=mgh=W,

Wye =L, - £,
E =E +W,.=mgh-u,mgcos s
L, <k

d Some energy, W, is loss from the system

 In this case it is due to the non-conservative
friction force — energy loss in the form of heat




1 Because of friction, the final speed is only 9.3
m/s as we found earlier

N

0 If the incline is frictionless, the final speed
would be:

E.=E,smceK; =0,U, =0

mvf[ =mgh=W,
W 2(75107))

g=

m | 100kg

- Because of the loss of energy, due to friction,
the final velocity is reduced. It seems that energy
IS not conserved
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/Conservation of Energy

Q There is an overall principle of conservation of
energy

Unlike the principle of conservation of mechanical
nergy, which can be “broken”, this principle can not

It says: = The total energy of the Universe is, has
always been, and always will be constant. Energy can

neither be created nor destroyed, only converted from
one form to another.”

d So far, we have only been concerned with
mechanical energy



J There are other forms of energy: heat,
electromagnetic, chemical, nuclear, rest mass

N

(E_=mc2)

total total
E™ = E"
mech others mech others
E E E E
M+ BN = BT+ K
E ;fzech - Eimech + Eiothers . E ;thers
mech mech
EST =E"" + W,

others others
=W,.=E"" -E" =0
d Q (W) is the energy lost (or gained) by the
mechanical system




 The electrical utility industry does not produce

energy, but merely converts energy U=mgh
5% //\/ Lake j
electricity v '
Light,

River

heat h

()
Hydro-powme=mvz 7

Example Problem

A ball is dropped from rest at the top of a 6.10-m tall
building, falls straight downward, collides inelastically
with the ground, and bounces back. The ball loses
10.0% of its kinetic energy every



time it collides with the ground. How many bounces
can the ball make and still reach a window sill that is
2-44-m-above the ground?

Solution:

Method: since the ball bounces on the ground, there
IS an external force. Therefore, we can not use
conservation of linear momentum.

An inelastic collision means the total energy is not
conserved, but we know by how much it is not
conserved. On every bounce 10% of K is lost:

O =0.1K.,i =1,2,3,...,n nisthe number of bounces

Given: hy = 6.10 m, h = 2.44 m



L, =U, =mgh, —

| 3
/ El — Kl = Eo ‘ I\ l6
TSince energy is conserved from \ Il \ |
point 0 to point 1. \ \I
1 v2 4 5

However, between point 1 and 2,
energy is lost

0, =0.1K,
WNC T _Q =k final — Einitial
T Qz T

2 M
—-0.1 K =E,-F, Total energy after
_0 1E E E / one bounce

E—O9E =L, =F,




By the same reasoning

E,=09E, =0.9E, =0.9(0.9E,)

2
E5 =0.9 EO Total energy after two bounces
The total energy after n bounces is then

Ef =O.9nE0 n=10g(hf/ho)
h. =09"moh log(0.9)
i | TE log(2.44/6.10)
h,=0.9"h n=
0 log(0.9)
0.9" =h,/h, n=_8.7
log(0.9)" =log(h,/h,) Answer is 8 bounces
nlog(0.9) =log(h, / h,)




Power

Average power:.

or

P W Units of J/s=Watt (W)

avg
At Measures the rate at
which work is done

Fcosgs
P, = T Fcosov,,
Instantaneous power:
W dWwW W can also be replaced by the
P =1lim = total energy E. So that power
At—0 At dt would correspond to the rate
}_7: d_’ of energy transfer
. S -
P = =[v

dt



Example

N

'A car accelerates uniformly from rest to 27 m/s in
/7.0 s along a level stretch of road. Ignoring friction,
determine the average power required to accelerate
the car if (a) the weight of the car is 1.2x10* N, and
(b) the weight of the car is 1.6x10% N.

Solution:

Given: v;=0, v,=27 m/s, At=7.0 s,
(@) mg= 1.2x10* N, (b) mg= 1.6x10% N

Method: determine the acceleration
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J We don't know the displacement s

- The car’s motor provides the force F to accelerate
the car — F and s point in same direction
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P - S2mg _ 52(1.2x107) L k’-4X104 W
’ g 9.80
N 4
L 5201.6X10%) g < 10u -
° 9.80
Or from work-energy theorem
1 2
W =AK = Eme
W mv’

Jod = = / Same as on
* At 2At previous slide

(a)




