Chapter 7 Internal Energy

Work done by a spring

 $F_{s} = -kx$

We know that work equals force times displacement

Hooke's Law for the restoring force of an ideal spring. (It is a conservative force.)

$$W_{s} = \frac{1}{2}kx_{i}^{2} - \frac{1}{2}kx_{f}^{2} = U_{s,i} - U_{s,f}$$

 $U_{elastic} = U_s = \frac{1}{2} kx^2$ Units of N/m m² = N m = J

Total potential energy is

$$U_{total} = U_g + U_s = mgy + \frac{1}{2}kx^2$$

Example Problem

A block (m = 1.7 kg) and a spring (k = 310 N/m) are on a frictionless incline (θ = 30°). The spring is compressed by x_i = 0.31 m relative to its unstretched position at x = 0 and then released. What is the speed of the block when the spring is still compressed by x_f = 0.14 m?

Given: m=1.7 kg, k=310 N/m, θ =30°, x_i=0.31 m, x_f=0.14 m, frictionless

Method: no friction, so we can use conservation of energy Initially $E = \frac{1}{2}mv^2 + mgh + \frac{1}{2}kx^2$

$v_i = 0, h_i = x_i \sin \theta$

$E_i = mgx_i \sin\theta + \frac{1}{2}kx_i^2$

Finally $h_f = x_f \sin \theta$, find v_f $\tilde{E}_f = \frac{1}{2}mv_f^2 + mgx_f\sin\theta + \frac{1}{2}kx_f^2$ $E_f = E_i$ $\frac{1}{2}mv_{f}^{2} + mgx_{f}\sin\theta + \frac{1}{2}kx_{f}^{2}$ $= mgx_{i}\sin\theta + \frac{1}{2}kx_{i}^{2}$ $\frac{1}{2}mv_{f}^{2} = mg(x_{i} - x_{f})\sin\theta + \frac{1}{2}k(x_{i}^{2} - x_{f}^{2})$ $\mathbf{v}_f = \sqrt{2g(x_i - x_f)\sin\theta} + \frac{k}{m}(x_i^2 - x_f^2)$

Molecular potentials (two atoms)

Morse potential

Multidimensional potentials

H₂-CO, U(R,r₁,r₂, θ_1 , θ_2 , Φ)

 r_1, r_2, θ_2, Φ fixed

θι

Example problem

If it takes 4.00 J of work to stretch a Hooke's law spring 10.0 cm from its unstretched length, determine the extra work required to stretch it an additional 10.0 cm.

Thermal energy

 Modeling a solid as a collection of spring-masses
Internal energy due to K of atoms and U of "springs"

www.

U

Conservative and Non-conservative Forces

- Conservative Force: a force for which the work it does on an object does not depend on the path. Gravity is an example.
- We know we can obtain the work with the work integral. $W = \int_{x_i}^{x_f} F_x dx = W_c$

□ If the force is conservative, then $W=W_c$ and this work can be related to the change in potential energy $W_c = \int_{x_i}^{x_f} F_x dx = -\Delta U$

with respect to x

$W_{NC} = E_f - E_i = W_{surr}$

☐ If no net non-conservative forces

$W_{NC} = 0 \Rightarrow E_f = E_i = E$ \Box Then, conservation of mechanical energy holds

I hen, conservation of mechanical energy holds $\Delta K = -\Delta U$

Crate on Incline Revisited

□ In this case it is due to the non-conservative friction force \rightarrow energy loss in the form of heat

Because of friction, the final speed is only 9.3 m/s as we found earlier

If the incline is frictionless, the final speed would be:

Because of the loss of energy, due to friction, the final velocity is reduced. It seems that energy is not conserved

Conservation of Energy

- There is an overall principle of conservation of energy
- Unlike the principle of conservation of mechanical energy, which can be "broken", this principle can not
- □ It says: ``The total energy of the Universe is, has always been, and always will be constant. Energy can neither be created nor destroyed, only converted from one form to another."
- □ So far, we have only been concerned with mechanical energy

Example Problem

A ball is dropped from rest at the top of a 6.10-m tall building, falls straight downward, collides inelastically with the ground, and bounces back. The ball loses 10.0% of its kinetic energy every time it collides with the ground. How many bounces can the ball make and still reach a window sill that is 2.44 m above the ground?

Solution:

Method: since the ball bounces on the ground, there is an external force. Therefore, we can **not** use conservation of linear momentum.

An inelastic collision means the total energy is not conserved, but we know by how much it is not conserved. On every bounce 10% of K is lost:

 $Q_i = 0.1K_i, i = 1, 2, 3, ..., n$ *n* is the number of bounces

Given: $h_0 = 6.10 \text{ m}$, $h_f = 2.44 \text{ m}$

 $E_o = U_o = mgh_o$ $E_1 = K_1 = E_0$

Since energy is conserved from point 0 to point 1.

However, between point 1 and 2, energy is lost

Power

avg

Average power: Units of J/s=Watt (W) P_{avg} Measures the rate at which work is done or $\frac{F\cos\phi\,s}{\Lambda t} = F\cos\phi\,\mathbf{v}_{avg}$

Instantaneous power:

W can also be replaced by the total energy E. So that power would correspond to the rate of energy transfer

Example

A car accelerates uniformly from rest to 27 m/s in 7.0 s along a level stretch of road. Ignoring friction, determine the average power required to accelerate the car if (a) the weight of the car is 1.2×10^4 N, and (b) the weight of the car is 1.6×10^4 N.

Solution:

Given: $v_i=0$, $v_f=27$ m/s, $\Delta t=7.0$ s,

(a) mg= $1.2x10^4$ N, (b) mg= $1.6x10^4$ N

Method: determine the acceleration

$P_{avg} = \frac{W}{\Delta t} = \frac{F\cos\phi s}{\Delta t} \qquad \overrightarrow{F}$

We don't know the displacement s

❑ The car's motor provides the force F to accelerate the car – F and s point in same direction

Or from work-energy theorem

