Chapter 4: Contact Interactions and Forces

New force has same magnitude as the weight, but opposite direction

The normal force is not mg!

Normal Force (Revisited)

Put textbook on a scale in an elevator

□ If elevator is at rest or moving with a constant velocity up or down, a=0. Then Newton's 2nd law gives:

$$\sum F_y = F_N - mg = 0 \quad \text{or} \quad F_N = mg$$

□ If elevator is accelerating?

- $F_N = mg + ma$
- $F_N = m(g+a)$
- \Box If a > 0, F_N > mg
- \Box If a < 0, F_N < mg
- \Box If a = -g, $F_N = 0$ ("weightless")

□ Using Newton's 2nd Law, find the normal force and the acceleration of the book

□ As we did for 2D kinematics, break problem into x- and y-components

 $\sum F_x = ma_x$

 $\sum F_y = ma_y$

$mg\sin\theta = ma_x$ $F_N - mg\cos\theta = 0$

- $a_x = g \sin \theta$ $F_N = mg \cos \theta$
- □ If $\theta \rightarrow 0^{\circ}$, $a_x = 0$ and $F_N = mg$
- □ If $\theta \rightarrow 90^{\circ}$, $a_x = g$, $F_N = 0$
 - **Frictional Forces**
 - □ Two types:
 - static applies to stationary objects
 - kinetic applies to sliding (moving) objects
 - \Box Like F_N, the Frictional Force is a contact force, but acts parallel to the interface of two objects