
Chapter 21: Superposition, 
Interference, and Standing Waves 
  In Chap. 20, we considered the motion of a 
single wave in space and time  

  What if there are two waves present 
simultaneously – in the same place and time 

  Let the first wave have λ1 and T1, while the 
second wave has λ2 and T2 

  The two waves (or more) can be added to give a 
resultant wave → this is the Principle of Linear 
Superposition 

•  Consider the simplest example: λ1= λ2  



  Since both waves travel in the same medium, the 
wave speeds are the same, then T1=T2 

  We make the additional condition, that the waves 
have the same phase – i.e. they start at the same 
time → Constructive Interference 

  The waves have A1=1 and A2=2. Here the sum 
of the amplitudes Asum=A1+A2 = 3 (y=y1+y2)  
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  If the waves (λ1= λ2 and T1=T2) are exactly out 
of phase, i.e. one starts a half cycle later than the 
other → Destructive Interference 

•  If A1=A2, we have complete cancellation: Asum=0 

A1 

A2 

sum 

  These are special cases. Waves may have 
different wavelengths, periods, and amplitudes and 
may have some fractional phase difference. 

y=y1+y1=0 



  Here are a few more examples: exactly out of 
phase (π), but different amplitudes  

  Same amplitudes, but out of phase by (π/2) 



Example Problem 
Speakers A and B are vibrating in phase. They are 
directed facing each other, are 7.80 m apart, and 
are each playing a 73.0-Hz tone. The speed of 
sound is 343 m/s. On a line between the speakers 
there are three points where constructive 
interference occurs. What are the distances of 
these three points from speaker A? 

Solution: 

Given: fA=fB=73.0 Hz, L=7.80 m, v=343 m/s 
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The next point (node) is half a 
wave-length away.  

Where n=0,1,2,3,… for all nodes 
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Beats 
  Different waves usually don’t have the same 
frequency. The frequencies may be much different or 
only slightly different. 

  If the frequencies are only slightly different, an 
interesting effect results  → the beat frequency. 

  Useful for tuning musical instruments. 

  If a guitar and piano, both play the same note 
(same frequency, f1=f2) → constructive interference 

  If f1 and f2 are only slightly different, constructive 
and destructive interference occurs  
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  The beat frequency is 

In terms of periods 

  The frequencies become ``tuned’’ 

Example Problem  

When a guitar string is sounded along with a 440-
Hz tuning fork, a beat frequency of 5 Hz is heard. 
When the same string is sounded along with a 436-
Hz tuning fork, the beat frequency is 9 Hz. What is 
the frequency of the string? 



Solution: 

Given: fT1=440 Hz, fT2=436 Hz, fb1=5 Hz, fb2=9 Hz 

But we don’t know if frequency of the string, fs, is 
greater than fT1 and/or fT2. Assume it is. 
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Standing Waves 
  A standing wave is an interference effect due to 
two overlapping waves

       - transverse 
– wave on guitar string, violin, …   - 
longitudinal – sound wave in a flute, pipe   

 organ, other wind instruments,… 

  The length (dictated by some physical constraint) 
of the wave is some multiple of the wavelength 

  You saw this in lab a few weeks ago 

  Consider a transverse wave (f1, T1) on a string of 
length L fixed at both ends.    



  If the speed of the wave is v (not the speed of 
sound in air), the time for the wave to travel from 
one end to the other and back is 

  If this time is equal to the period of the wave, 
T1, then the wave is a standing wave   

        
         

  Therefore the length of the wave is half of a 
wavelength or a half-cycle is contained between 
the end points 

  We can also have a full cycle contained between 
end points 
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  Or three half-cycles      
        
         

  Or n half-cycles      
        
         

  Some notation:      
        
        
        
         

  The zero amplitude points are called nodes; 
the maximum amplitude points are the antinodes 
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Longitudinal Standing Waves 
  Consider a tube with both ends opened 

  If we produce a sound of frequency f1 at one 
end, the air molecules at that end are free to 
vibrate and they vibrate with f1 

  The amplitude of the wave is the amplitude of 
the vibrational motion (SHM) of the air molecule – 
changes in air density 

  Similar to the transverse wave on a string, a 
standing wave occurs if the length of the tube is a 
half-multiple of the wavelength of the wave 



  For the first harmonic (fundamental), only half 
of a cycle is contained in the tube    

        

  Following the same reasoning as for the 
transverse standing wave, all of the harmonic 
frequencies are       

        
        
        

  Identical to transverse wave, except number of 
nodes is different 
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  An example is a flute. It is a tube which is open 
at both ends.  
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  We can also have a tube which is closed at one 
end and opened at the other (open-closed) 

  At the closed end, the air molecules can not 
vibrate – the closed end must be a ``node’’ 

  The open end must be an anti-node 



  The ``distance’’ between a node and the next 
adjacent anti-node is 1/4 of a wavelength. 
Therefore the fundamental frequency of the open-
closed tube is       

        
         

  The next harmonic does not occur for 1/2 of a 
wavelength, but 3/4 of a wavelength. The next is 
at 5/4 of a wavelength – every odd 1/4 wavelength

        
         

  Note that the even harmonics are missing. Also, 
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Complex (Real) Sound Waves 
  Most sounds that we hear are not pure tones 
(single frequency – like the fundamental f1 of a 
standing wave) 

  But are superpositions of many frequencies with 
various amplitudes 

  For example, when a note (tone, frequency) is 
played on a musical instrument, we actually hear all 
of the harmonics (f1, f2, f3, …), but usually the 
amplitudes are decreased for the higher harmonics 

  This is what gives each instrument it’s unique 
sound 



  For example, the sound of a piano is dominated 
by the 1st harmonic while for the violin, the 
amplitudes of the 1st, 2nd, and 5th harmonic are 
nearly equal – gives it a rich sound 
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Example Problem 
A tube with a cap on one end, but open at the 
other end, produces a standing wave whose 
fundamental frequency is 130.8 Hz. The speed of 
sound is 343 m/s. (a) If the cap is removed, what 
is the new fundamental frequency? (b) How long is 
the tube? 

Solution: 

Given: f1oc=130.8 Hz, n=1, v=343 m/s 
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(a) We don’t need to know v or L, since they are 
the same in both cases. Solve each equation for v/
L and set equal 
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(b) Can solve for L from either open-open or open-
closed tubes 
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