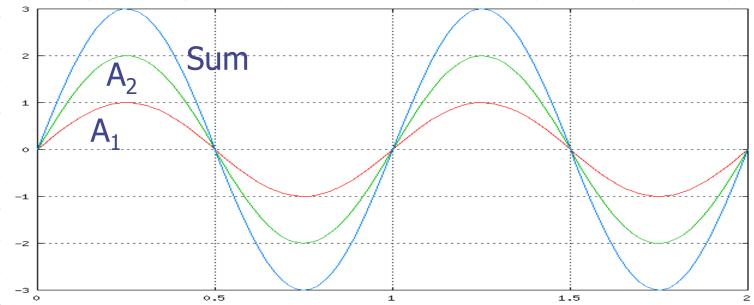
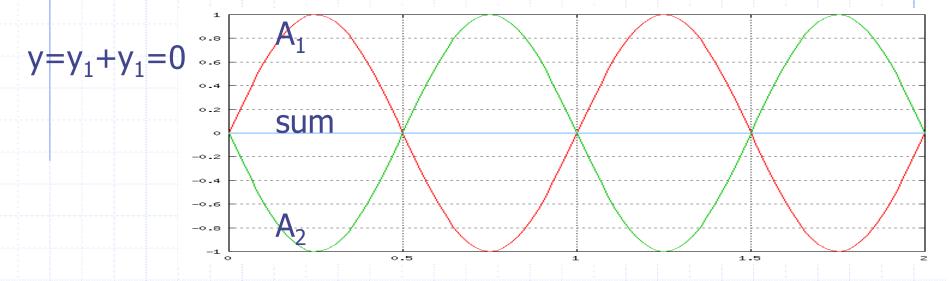
Chapter 21: Superposition, Interference, and Standing Waves

- ☐ In Chap. 20, we considered the motion of a single wave in space and time
- What if there are two waves present simultaneously in the same place and time
- \Box Let the first wave have λ_1 and T_1 , while the second wave has λ_2 and T_2
- □ The two waves (or more) can be added to give a resultant wave → this is the Principle of Linear Superposition
- Consider the simplest example: $\lambda_1 = \lambda_2$

- \square Since both waves travel in the same medium, the wave speeds are the same, then $T_1=T_2$
- We make the additional condition, that the waves have the same phase i.e. they start at the same time → Constructive Interference
- ☐ The waves have $A_1=1$ and $A_2=2$. Here the sum of the amplitudes $A_{sum}=A_1+A_2=3$ ($y=y_1+y_2$)

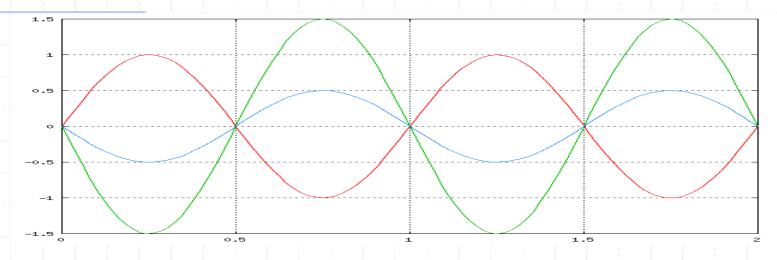


- □ If the waves $(\lambda_1 = \lambda_2 \text{ and } T_1 = T_2)$ are exactly out of phase, i.e. one starts a half cycle later than the other \rightarrow *Destructive Interference*
- If A₁=A₂, we have complete cancellation: A_{sum}=0

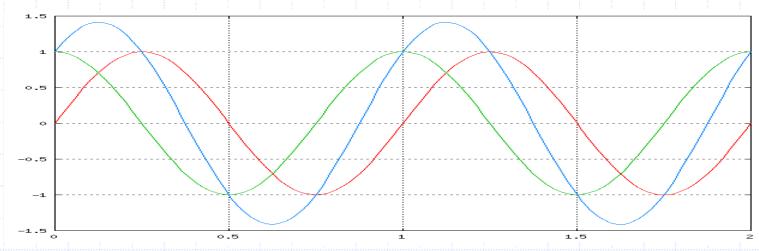


☐ These are special cases. Waves may have different wavelengths, periods, and amplitudes and may have some fractional phase difference.

 \Box Here are a few more examples: exactly out of phase (π) , but different amplitudes



 \square Same amplitudes, but out of phase by $(\pi/2)$



Example Problem

Speakers A and B are vibrating in phase. They are directed facing each other, are 7.80 m apart, and are each playing a 73.0-Hz tone. The speed of sound is 343 m/s. On a line between the speakers there are three points where constructive interference occurs. What are the distances of these three points from speaker A?

Solution:

Given: $f_A = f_B = 73.0 \text{ Hz}$, L=7.80 m, v=343 m/s

$$\lambda = vT = \frac{v}{f} = \frac{343 \text{ m/s}}{73.0 \text{ Hz}} = 4.70 \text{ m}$$

$$L = \lambda + 2x$$
$$x = \frac{L}{2} - \frac{\lambda}{2}$$

$$x = \frac{L}{2} - n\frac{\lambda}{2}$$

x is the distance to the first constructive interference point

The next point (node) is half a wave-length away.

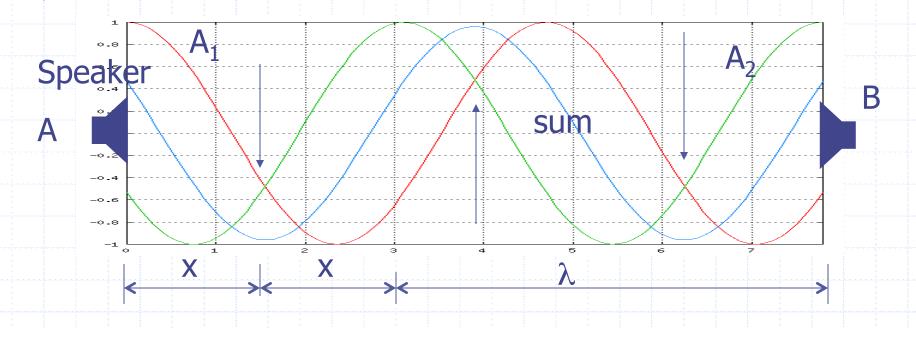
Where n=0,1,2,3,... for all nodes

$$n = 0$$
: $x = \frac{7.8}{2} - 0\frac{4.70}{2} = 3.9 \text{ m}$

$$n = 1$$
: $x = \frac{7.8}{2} - 1\frac{4.70}{2} = 1.55 \text{ m}$

$$n = 2$$
: $x = \frac{7.8}{2} - 2\frac{4.70}{2} = -0.8 \text{ m}$ Behind speaker A

$$n = -1$$
: $x = \frac{7.8}{2} - (-1)\frac{4.70}{2} = 6.25 \text{ m}$



Beats

- ☐ Different waves usually don't have the same frequency. The frequencies may be much different or only slightly different.
- ☐ If the frequencies are only *slightly* different, an interesting effect results \rightarrow the *beat frequency*.
- ☐ Useful for tuning musical instruments.
- ☐ If a guitar and piano, both play the same note (same frequency, $f_1=f_2$) → constructive interference
- \square If f_1 and f_2 are only slightly different, constructive and destructive interference occurs

☐ The beat frequency is

$$\begin{aligned} f_b &= \left| f_1 - f_2 \right| \quad \text{or} \\ \frac{1}{T_b} &= \left| \frac{1}{T_1} - \frac{1}{T_2} \right| \quad \text{In terms of periods} \\ \mathbf{as} \quad f_2 &\to f_1, \quad f_b \to 0 \end{aligned}$$

☐ The frequencies become ``tuned"

Example Problem

When a guitar string is sounded along with a 440-Hz tuning fork, a beat frequency of 5 Hz is heard. When the same string is sounded along with a 436-Hz tuning fork, the beat frequency is 9 Hz. What is the frequency of the string?

Solution:

Given: f_{T1} =440 Hz, f_{T2} =436 Hz, f_{b1} =5 Hz, f_{b2} =9 Hz

But we don't know if frequency of the string, f_s , is greater than f_{T1} and/or f_{T2} . Assume it is.

$$f_{b1} = f_s - f_{T1}$$
 and $f_{b2} = f_s - f_{T2} \Rightarrow$
 $f_s = f_{b1} + f_{T1} = 5 + 440 = 445 \text{ Hz}$
 $f_s = f_{b2} + f_{T2} = 9 + 436 = 445 \text{ Hz}$

If we chose f_s smaller

$$f_{b1} = f_{T1} - f_s$$
 and $f_{b2} = f_{T2} - f_s \Rightarrow$
 $f_s = f_{T1} - f_{b1} = 440 - 5 = 435 \text{ Hz}$
 $f_s = f_{T2} - f_{b2} = 436 - 9 = 427 \text{ Hz}$

Standing Waves

- A <u>standing wave</u> is an interference effect due to two overlapping waves
 - transverse
- wave on guitar string, violin, ...
 longitudinal sound wave in a flute, pipe organ, other wind instruments,...
- ☐ The length (dictated by some physical constraint) of the wave is some multiple of the wavelength
- ☐ You saw this in lab a few weeks ago
- \square Consider a <u>transverse</u> wave (f_1, T_1) on a string of length L fixed at both ends.

- \Box If the speed of the wave is v (not the speed of sound in air), the time for the wave to travel from one end to the other and back is $2L/_{\rm V}$
- \Box If this time is equal to the period of the wave, T_1 , then the wave is a *standing wave*

$$T_1 = \frac{1}{f_1} = \frac{2L}{v} \Rightarrow f_1 = \frac{v}{2L} = \frac{v}{\lambda_1} \Rightarrow \lambda_1 = 2L$$

- ☐ Therefore the length of the wave is half of a wavelength or a half-cycle is contained between the end points
- We can also have a full cycle contained between end points $\lambda_2 = L \Rightarrow f_2 = \frac{V}{\lambda_2} = \frac{V}{L} = f_2$

☐ Or three half-cycles

$$\lambda_3 = \frac{2}{3}L \Rightarrow f_3 = \frac{V}{\lambda_3} = \frac{V}{\frac{2}{3}L} = \frac{3V}{2L} = f_3$$

☐ Or *n* half-cycles

$$f_n = n\left(\frac{V}{2L}\right), \quad n = 1, 2, 3, 4, \dots$$
For a string fixed at both ends

■ Some notation:

 f_1 1st harmonic or fundamental

$$f_2 = 2f_1$$
 2nd 1st overtone

$$f_3 = 3f_1$$
 3rd 2nd overtone

$$f_4 = 4f_1$$
 4th 3rd overtone

☐ The zero amplitude points are called *nodes*; the maximum amplitude points are the *antinodes*

Longitudinal Standing Waves

- Consider a tube with both ends opened
- \Box If we produce a sound of frequency f_1 at one end, the air molecules at that end are free to vibrate and they vibrate with f_1
- ☐ The amplitude of the wave is the amplitude of the vibrational motion (SHM) of the air molecule changes in air density
- ☐ Similar to the transverse wave on a string, a standing wave occurs if the length of the tube is a half-multiple of the wavelength of the wave

□ For the first harmonic (fundamental), only half of a cycle is contained in the tube v

 $f_1 = \frac{\mathbf{v}}{2L}$

☐ Following the same reasoning as for the transverse standing wave, all of the harmonic

frequencies are

$$f_n = n\left(\frac{\mathbf{V}}{2L}\right), \quad n = 1, 2, 3, \dots$$
Open-open tube

☐ Identical to transverse wave, except number of nodes is different

$$\# \operatorname{nodes} = n - 1$$
string

$$# nodes = n$$

Open-open tube

☐ An example is a flute. It is a tube which is open at both ends.

$$f_a = \frac{V}{2L_a},$$

$$f_b = \frac{V}{2L_b} < f_a$$
mouthpiece

- We can also have a tube which is closed at one end and opened at the other (open-closed)
- ☐ At the closed end, the air molecules can not vibrate the closed end must be a ``node"
- ☐ The open end must be an anti-node

☐ The ``distance" between a node and the next adjacent anti-node is 1/4 of a wavelength. Therefore the fundamental frequency of the openclosed tube is

$$f_1 = \frac{V}{4L}$$
 since $L = \lambda/4$ or $\lambda = 4L$

☐ The next harmonic does not occur for 1/2 of a wavelength, but 3/4 of a wavelength. The next is at 5/4 of a wavelength – every odd 1/4 wavelength

$$f_n = n\left(\frac{v}{4L}\right), n = 1,3,5,...$$
 Open-closed

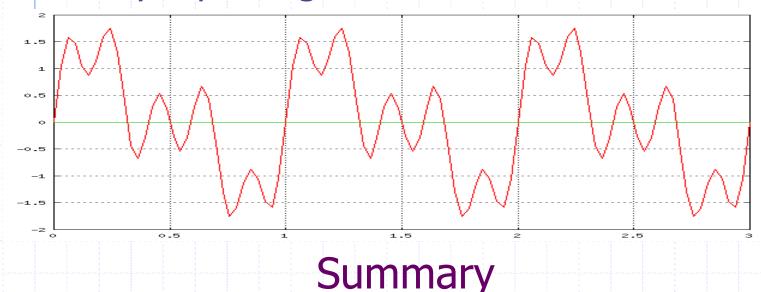
Note that the even harmonics are missing. Also,
$$\# \operatorname{nodes} = \frac{n-1}{2}$$

$$\# \text{nodes} = \frac{n-1}{2}$$

Complex (Real) Sound Waves

- \square Most sounds that we hear are *not* pure tones (single frequency like the fundamental f_1 of a standing wave)
- But are superpositions of many frequencies with various amplitudes
- \Box For example, when a note (tone, frequency) is played on a musical instrument, we actually hear all of the harmonics (f_1 , f_2 , f_3 , ...), but usually the amplitudes are decreased for the higher harmonics
- ☐ This is what gives each instrument it's unique sound

□ For example, the sound of a piano is dominated by the 1st harmonic while for the violin, the amplitudes of the 1st, 2nd, and 5th harmonic are nearly equal – gives it a rich sound



Violin wave form

String fixed at both ends and the open-open tube

Open-closed tube

$$f_n = n\left(\frac{v}{2L}\right), \quad n = 1, 2, 3, \dots$$
 $f_n = n\left(\frac{v}{4L}\right), n = 1, 3, 5, \dots$

Example Problem

A tube with a cap on one end, but open at the other end, produces a standing wave whose fundamental frequency is 130.8 Hz. The speed of sound is 343 m/s. (a) If the cap is removed, what is the new fundamental frequency? (b) How long is the tube?

Solution:

Given: $f_1^{\text{oc}}=130.8 \text{ Hz}$, n=1, v=343 m/s

$$f_n^{oc} = n \left(\frac{\mathbf{V}}{4L} \right) \qquad f_n^{oo} = n \left(\frac{\mathbf{V}}{2L} \right)$$

(a) We don't need to know v or L, since they are the same in both cases. Solve each equation for v/L and set equal

$$\frac{V}{L} = 4f_1^{oc}, \quad \frac{V}{L} = 2f_1^{oo} \implies 4f_1^{oc} = 2f_1^{oo}$$
$$f_1^{oo} = 2f_1^{oc} = 2(130.8 \text{ Hz}) = 261.6 \text{ Hz}$$

(b) Can solve for L from either open-open or openclosed tubes

$$f_1^{oc} = 1\left(\frac{V}{4L}\right) \Rightarrow$$

$$L = \frac{V}{4f_1^{oc}} = \frac{343 \text{ m/s}}{4(130.8 \text{ Hz})} = 0.6556 \text{ m}$$

$$L = \frac{V}{2f_1^{oo}} = \frac{343 \text{ m/s}}{2(261.6 \text{ Hz})} = 0.6556 \text{ m}$$