
Universal Force due to Gravity 
(sections 6.3 and 13.3) 
  Every object in the Universe exerts an attractive force 
on all other objects 

  The force is directed along the line separating two 
objects 

  Because of the 3rd law, the force exerted by object 1 
on 2, has the same magnitude, but opposite direction, as 
the force exerted on 2 by 1 
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where 

And G ≡ Universal Gravitational Constant 
 = 6.67259 x 10-11 N m2/kg2 

•  G is a constant everywhere in the Universe, 
therefore it is a fundamental constant 

  g is not a fundamental constant, but we 
can calculate it. Compare: 
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Let m1 = ME = mass of the Earth, 

m2 = m = mass of an object which is << ME, 

r = RE , object is at surface of the Earth, 

Set the forces equal to each other: 
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  Weight ≠ mass 

•  Weight  - the force exerted on an object by the 
Earth’s gravity        

  FG = mg = W 

•  Mass is intrinsic to an object, weight is not 

•  From previous page, W=m(GME/RE
2)   

 - your weight would be different on the  
 moon 

•  Gravity is a very weak force, need massive  
 objects 



Example Problem (difficult!) 
Two particles are located on the x-axis. Particle 1 has a 
mass of m and is at the origin. Particle 2 has a mass of 2m 
and is at x=+L.  A third particle is placed between particles 
1 and 2. Where on the x-axis should the third particle be 
located so that the magnitude of the gravitational force on 
both particles 1 and 2 doubles? Express your answer in 
terms of L. 

Solution: 

Principle – universal gravitation (no Earth), F12=Gm1m2/r2 

Strategy – compute forces with particles 1 and 2, then 
compute forces with three particles 
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Situation 1 
Situation 2 

Given: m1 = m, m2 = 2m, r12 = L 

Don’t know: m3=? 

Find: x = r13 when force on 1 and 2 equals 2F12 

Situation 1: 
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Situation 2: 
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Since in situation 2 the total force 
must be 2F12. 

Solve for x. 
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Now consider m2: 
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Substitute for m3 
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