PHYS 1211 Fall 2021 Test 2 October 14, 2021

Name	Student ID	Score
a bonus problem. F and reasoning clear	consists of one set of conceptual questor the problems, you must show all of ly to receive credit. Be sure to inclu An equation sheet is provided on the	f your work, calculations, de units in your solutions
	tual questions. State whether the follow, no calculations required)	owing statements are True or
	ewton's 1st law, the laws of physics are nd a reference frame moving at a constar	
(b) For an object in	uniform circular motion, its tangential a	
(c) The kinetic ener	rgy depends on the direction of motion o	of the object.
False	K = 1 mv 2 is a	a scalor

> d=constant

Problem 2. A compact disk, which has a diameter of 12.0 cm, speeds up uniformly from rest to 4.00 rev/s in 3.00 s. What is the tangential acceleration of a point on the rim of the disk at 3.00 s? (15 points total)

Use

$$W_f = W_i + d + f$$
 $W_i = 0$, $W_f = 4 \frac{reV}{5} \times \frac{2\pi rol}{1 \frac{reV}{5}} = 25.132 \frac{rol}{5}$
 $W_f = W_i + d + f$
 $W_i = 0$, $W_f = 4 \frac{reV}{5} \times \frac{2\pi rol}{1 \frac{reV}{5}} = 25.132 \frac{rol}{5}$
 $W_f = W_i + d + f$
 $W_i = 0$, $W_f = 4 \frac{reV}{5} \times \frac{2\pi rol}{1 \frac{reV}{5}} = 25.132 \frac{rol}{5}$
 $W_f = W_i + d + f$
 $W_i = 0$, $W_f = 4 \frac{reV}{5} \times \frac{2\pi rol}{1 \frac{reV}{5}} = 25.132 \frac{rol}{5}$
 $W_f = W_i + d + f$
 $W_i = 0$, $W_$

Problem 3. You are riding upstream on a Jet Ski on a river which is flowing South at a speed of 2.8 m/s with respect to the riverbank. Your velocity is 9.5 m/s at an angle of 20.0° North of East also with respect to the riverbank. What is your speed with respect to the flowing river if your velocity vector is at an angle of 35.0° North of East? (15 points total)

$$V_0 = V_{river} = -2.8 \frac{m}{s} \int_{0}^{\infty} V_{old} = V_{$$

Problem 4. One of the Starlink satellites moves in a circular orbit about the Earth at a speed of 5500 m/s. What is its orbital period? (15 points total)

speed of 5500 m/s. What is its orbital period? (15 points total)

$$V_{t} = \frac{2\pi r}{T} = V = \sqrt{\frac{GM}{r}} = \frac{\text{orbita}}{\text{speed}}$$

$$V_{t} = \frac{2\pi r}{V^{2}} = V = \sqrt{\frac{GM}{r}} = \frac{\text{orbita}}{\text{speed}}$$

$$V_{t} = \frac{2\pi r}{V^{2}} = V = \sqrt{\frac{GM}{r}} = \frac{2\pi r}{\text{speed}}$$

$$V_{t} = \frac{2\pi r}{V^{2}} = V = \sqrt{\frac{GM}{r}} = \frac{2\pi r}{\text{speed}}$$

$$V_{t} = \frac{2\pi r}{V^{2}} = V = \sqrt{\frac{GM}{r}} = \frac{2\pi r}{\text{speed}}$$

$$V_{t} = \frac{2\pi r}{V^{2}} = V = \sqrt{\frac{GM}{r}} = \frac{2\pi r}{\text{speed}}$$

$$V_{t} = \frac{2\pi r}{V^{2}} = V = \sqrt{\frac{GM}{r}} = \frac{2\pi r}{V^{2}} = \frac{2\pi r}{V^{2}}$$

Problem 5. A horizontal rope with 15 N tension drags a 25 kg box of Halloween chocolate 2.0 m to the left across a horizontal surface. How much work is done by (a) the tension force? (b) gravity? (15 points total)

a)
$$W = F \cos\phi \Delta X$$

$$V_T = T \cos\phi \Delta X$$

$$= (5N)(1)(2,0n) = 305$$

$$= (5N)(1)(2,0n) = 305$$
b) $W_g = (mg)\cos\phi \Delta X = mg\Delta X \cos 90^\circ = 70$

Problem 6. Two blocks are connected by a string as shown in the figure. If $\theta = 30.0^{\circ}$, $m_1 = 10.0$ kg, and $m_2 = 0.5$ kg, determine the acceleration of m_1 . The friction coefficients between m_1 and the incline surface are $\mu_s = 0.7$ and $\mu_k = 0.5$. Determine the tension in the string. Hint: draw free-body diagrams. (30 points total) FBDs

Newton's 2nd Law problem

+KIFy = Mary N - mg (050 =0 N= m, g/650

+/ EFX = m, a,x m, g Sind - Fr - T = M, 9,x

migsind-4KN-T=m,a

m, g since - 4 km, growd - m2 (g+9) = m, a

m, g sino -4 k m, g (000 - m2g = (m, +m2) a M,5 (SINQ-1415(050) - M22

MI+M2 = 1011585 m/32

+15Fg = M2 924 T-M29 = M2923 T= m, (g+924) need 925 now 9,x = 925 = 9 > T = 0,5 (9.8+ 0.1585) = 4,98N

(10) (9,8) (sin 300-0,5 ms 300) -0,5(9,1) 10,5

Bonus Problem. A 1500 kg car starts from rest and drives around a flat 50-m-diameter circular track. The forward force provided by the car's drive wheels is a constant 1000 N. (a) What are the magnitude and direction of the car's acceleration at t = 10 s? Give the direction as an angle from the r-axis. (b) If the coefficient of static friction between the rubber tire and concrete track is $\mu_{\sharp} = 1.0$, at what time does the car begin to slide out of the circle? (5 points total)

the circle? (5 points total)
$$\frac{1}{5}M$$
 $\frac{1}{5}F_{T} = Mq_{T}$
 $\frac{1$