The Spring

 \Box Consider a spring, which we apply a force F_A to either stretch it or compress it

$$F_A = kx$$

k is the spring constant, units of N/m, different for different materials, number of coils

☐ From Newton's 3rd Law, the spring exerts a force that is equal in magnitude, but opposite in direction

$$F_s = -kx$$

Hooke's Law for the restoring force of an ideal spring.

Work done by a spring

■ We know that work equals force times displacement

$$S = X_f - X_i$$

 $S = \mathcal{X}_f - \mathcal{X}_i$ But the force is not constant

$$F_{s,i} = -kx_i,$$

$$F_{s,f} = -kx_f$$

Take the average force

$$F_{s,avg} = \frac{F_{s,i} + F_{s,f}}{2}$$

$$F_{s,avg} = -\frac{1}{2}k(x_f + x_i)$$

Then the work done by the spring is

$$W_{s} = F_{s,avg} \cos \phi \, s = F_{s,avg} \cos 0^{\circ} \, s$$

$$= -\frac{1}{2} k(x_{f} + x_{i})(x_{f} - x_{i}) = -\frac{1}{2} k(x_{f}^{2} - x_{i}^{2})$$

$$W_{s} = \frac{1}{2} kx_{i}^{2} - \frac{1}{2} kx_{f}^{2}$$

Example problem

If it takes 4.00 J of work to stretch a Hooke's law spring 10.0 cm from its unstretched length, determine the extra work required to stretch it an additional 10.0 cm.

Example problem

Using the definition of the scalar product, find the angle between the vectors:

$$\vec{A} = 3\hat{i} - 2\hat{j}$$

$$\vec{B} = 4\hat{i} - 4\hat{j}$$

Power

or

Average power:

$$P_{avg} = \frac{W}{\Delta t}$$

Units of J/s=Watt (W)

Measures the rate at which work is done

$$P_{avg} = \frac{F\cos\phi s}{\Delta t} = F\cos\phi v_{avg}$$

Instantaneous power:

$$P = \lim_{\Delta t \to 0} \frac{W}{\Delta t} = \frac{dW}{dt}$$

$$P = \frac{\vec{F} \cdot d\vec{S}}{\vec{F} \cdot d\vec{S}} = \vec{F} \cdot \vec{V}$$

W can also be replaced by the total energy E. So that power would correspond to the rate of energy transfer

Example

A car accelerates uniformly from rest to 27 m/s in 7.0 s along a level stretch of road. Ignoring friction, determine the average power required to accelerate the car if (a) the weight of the car is 1.2x10⁴ N, and (b) the weight of the car is 1.6x10⁴ N.

Solution:

Given: $v_i=0$, $v_f=27$ m/s, $\Delta t=7.0$ s,

(a) $mg = 1.2x10^4 N$, (b) $mg = 1.6x10^4 N$

Method: determine the acceleration

$$P_{avg} = \frac{W}{\Delta t} = \frac{F\cos\phi \, s}{\Delta t}$$

- We don't know the displacement s
- □ The car's motor provides the force F to accelerate the car F and s point in same direction

$$P_{avg} = \frac{Fs}{\Delta t} = \frac{ma_s s}{\Delta t}$$
Need a_s and s

$$v_f^2 = v_i^2 + 2a_s s \Rightarrow a_s s = \frac{(v_f^2 - v_i^2)}{2}$$

$$P_{avg} = \frac{m}{\Delta t} \left(\frac{(v_f^2 - v_i^2)}{2} \right) = \frac{m}{(7.0 \text{ s})} \left(\frac{27^2 - 0}{2} \right) = 52m$$

$$P_{avg} = \frac{52mg}{g} = \frac{52(1.2 \times 10^4)}{9.80} = 6.4 \times 10^4 \text{ W}$$
 (a)
 $P_{avg} = \frac{52(1.6 \times 10^4)}{9.80} = 8.5 \times 10^4 \text{ W}$ (b)

$$P_{avg} = \frac{52(1.6 \times 10^4)}{9.80} = 8.5 \times 10^4 \text{ W} \text{ (b)}$$

Or from work-energy theorem

$$W = \Delta K = \frac{1}{2} m v_f^2$$

$$P_{avg} = \frac{W}{\Delta t} = \frac{m v_f^2}{2\Delta t}$$
 Same as on $2\Delta t$ previous slide