
Rotational Kinematics 
  Up to now, we have only considered point-
particles, i.e. we have not considered their shape 
or size, only their mass 

  Also, we have only considered the motion of 
point-particles – straight-line, free-fall, projectile 
motion. But real objects can also tumble, twirl, … 

  This subject, rotation, is what we explore in this 
section and in Chapter 12. 

  First, we begin by considering the concepts of 
circular motion 

 



  Instead of a point-particle, consider a thin disk 
of radius r spinning on its axis  
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  This disk is a real object, it 
has structure 

  We call these kinds of 
objects Rigid Bodies 

  Rigid Bodies do not bend 
twist, or flex; for example, a 
billiard ball 

θ
r 

r 

s 

s = arc length 

Axis of 
rotation 

r
s

==
radius

length arc
θ Units of 

radians 
(rad) 



θrs =
  For one complete revolution rad  2πθ =

ncecircumfere  2 == rs π
•  Conversion relation: 2π rad = 360°  

•  Now consider the rotation of the disk from some 
initial angle θi to a final angle θf  during some time 
period ti to tf 
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  Similar to instantaneous velocity, we can define 
the Instantaneous Angular Velocity   

        
        

  A change in the Angular Velocity gives 

  Analogous to Instantaneous Angular Velocity, 
the Instantaneous Angular Acceleration is 
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  Actually, the Angular Velocities and Angular 
Acceleration are magnitudes of vector quantities

        

  What is their direction? 

  They point along the axis of rotation with the 
sign determined by the right-hand rule 

Example 

A fan takes 2.00 s to reach its operating angular 
speed of 10.0 rev/s. What is the average angular 
acceleration (rad/s2)?  
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Solution: 

Given: tf=2.00 s, ωf=10.0 rev/s  

Recognize: ti=0, ωi=0, and that ωf needs to be 
converted to rad/s 
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Equations of Rotational Kinematics 
  Just as we have derived a set of equations to 
describe ``linear’’ or ``translational’’ kinematics, 
we can also obtain an analogous set of equations 
for rotational motion (section 4.7 -> later) 

  Consider correlation of variables 

Translational      Rotational    
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  For one complete revolution, 
the angular displacement is 2π 
rad 

  From Uniform Circular Motion, 
we know that the time for a 
complete revolution is a period T 

 Therefore the angular velocity (frequency) can 
be written  



 Also, we know that the speed for an object in a 
circular path is 
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 The tangential speed corresponds to the speed of 
a point on a rigid body, a distance r from its center, 
rotating at an angular speed ω 

 Each point on the rigid body 
rotates at the same angular 
speed, but its tangential speed 
depends on its location r 
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Example Problem 
 The Bohr model of the hydrogen atom pictures 
the electron as a tiny particle moving in a circular 
orbit about a stationary proton. In the lowest-
energy orbit the distance from the proton to the 
electron is 0.529x10-10 m and the tangential (or 
linear) speed of the electron is 2.18x106 m/s. (a) 
What is the angular speed of the electron? (b) 
How many orbits about the proton does it make 
each second? 


