Rotational Kinematics

□ Up to now, we have only considered pointparticles, i.e. we have not considered their shape or size, only their mass ● →

□ Also, we have only considered the motion of point-particles – straight-line, free-fall, projectile motion. But real objects can also tumble, twirl, ...

□ This subject, rotation, is what we explore in this section and in Chapter 12.

□ First, we begin by considering the concepts of circular motion

Instead of a point-particle, consider a thin disk of radius r spinning on its axis

7

Axis of

rotation

S

H

s = arc length

This disk is a real object, it has structure

X We call these kinds of objects *Rigid Bodies*

> Rigid Bodies do not bend twist, or flex; for example, a billiard ball

 $0 = \frac{\text{arc length}}{\text{radius}} = \frac{s}{r}$

Units of radians (rad)

\Box For one complete revolution $\theta = 2\pi$ rad

- $s = 2\pi r = \text{circumference}$
- Conversion relation: 2π rad = 360°
- Now consider the rotation of the disk from some initial angle θ_i to a final angle θ_f during some time period t_i to t_f

CCW

X

 $\Delta \theta = \theta_{f} - \theta_{i}$ Angular displacement (units of rad, ccw is +) $\frac{\theta_{f} - \theta_{i}}{t_{f} - t_{i}} = \frac{\Delta \theta}{\Delta t} = \omega_{avg}$

Average angular velocity (units of rad/s)

 $s = r\theta$

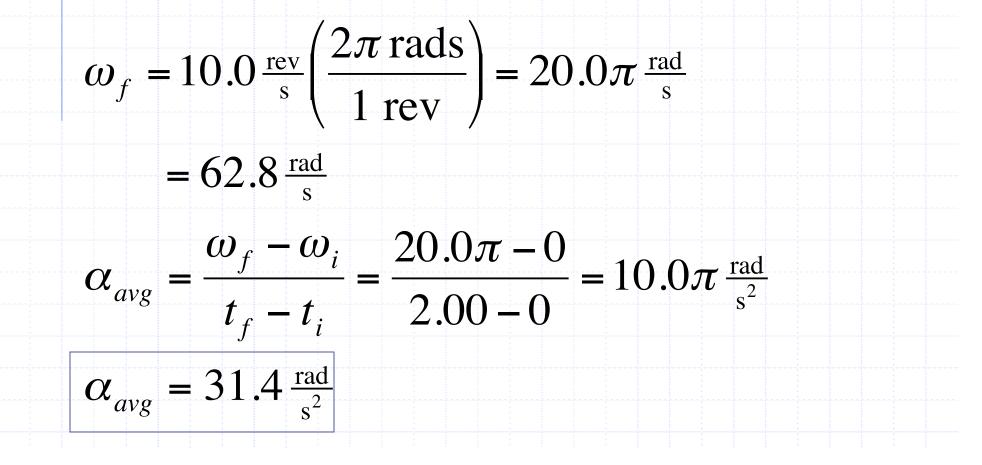
□ Similar to instantaneous velocity, we can define the Instantaneous Angular Velocity $\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$ □ A change in the Angular Velocity gives $\frac{\omega_{f} - \omega_{i}}{t_{f} - t_{i}} = \frac{\Delta \omega}{\Delta t} = \alpha_{avg} \begin{array}{c} \text{Average Angular} \\ \text{Acceleration (rads/s^{2})} \end{array}$ □ Analogous to Instantaneous Angular Velocity, the Instantaneous Angular Acceleration is $\alpha = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$

□ Actually, the Angular Velocities and Angular Acceleration are magnitudes of **vector** quantities \rightarrow \rightarrow \rightarrow

$\vec{\omega}$ and $\vec{\alpha}$

□ What is their direction?

□ They point along the axis of rotation with the sign determined by the *right-hand rule*

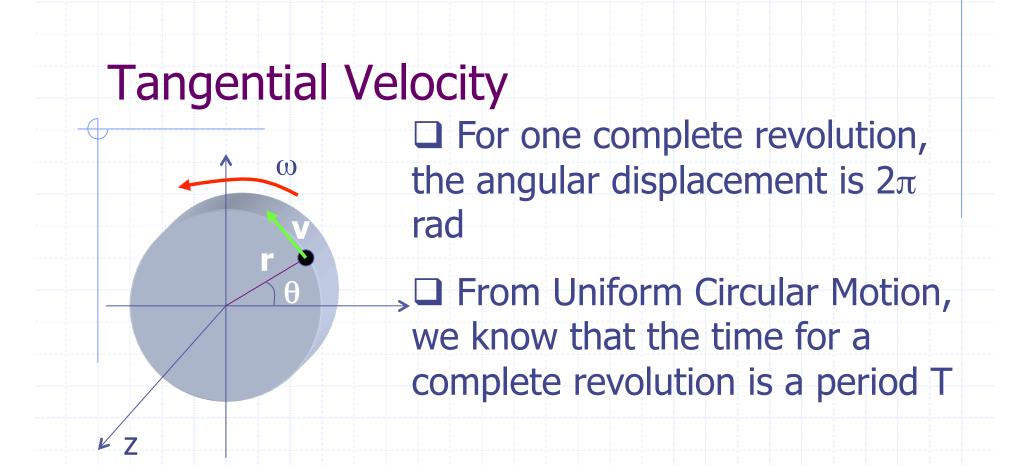

Example

A fan takes 2.00 s to reach its operating angular speed of 10.0 rev/s. What is the average angular acceleration (rad/s²)?

Solution:

Given: $t_f=2.00 \text{ s}$, $\omega_f=10.0 \text{ rev/s}$

Recognize: $t_i=0$, $\omega_i=0$, and that ω_f needs to be converted to rad/s



Equations of Rotational Kinematics

□ Just as we have derived a set of equations to describe ``linear" or ``translational" kinematics, we can also obtain an analogous set of equations for rotational motion (section 4.7 -> later)

Consider correlation of variables

Translational		<u>Rotational</u>	
X	displacement	θ	
V	velocity	ω	
а	acceleration	α	
t	time	t	

□ Therefore the angular velocity (frequency) can be written $\Delta\theta$ [2 π]

$$\omega = \frac{\Delta \sigma}{\Delta t} = \frac{2\pi}{T} = \omega$$
 (rad/s)

Also, we know that the speed for an object in a circular path is

 $\mathbf{v} = \frac{2\pi r}{T} = r\omega = \mathbf{v}_T$ Tangential speed (m/s)

The tangential speed corresponds to the speed of a point on a rigid body, a distance r from its center, rotating at an angular speed ωv_T

r=0

Each point on the rigid body rotates at the same angular speed, but its tangential speed depends on its location r

Example Problem

□ The Bohr model of the hydrogen atom pictures the electron as a tiny particle moving in a circular orbit about a stationary proton. In the lowestenergy orbit the distance from the proton to the electron is 0.529x10⁻¹⁰ m and the tangential (or linear) speed of the electron is 2.18x10⁶ m/s. (a) What is the angular speed of the electron? (b) How many orbits about the proton does it make each second?