
The Simple Pendulum
q An application of Simple Harmonic Motion
q A mass m at the end of a massless

rod of length L
q There is a restoring force

which acts to restore the
mass to q=0

• Compare to the spring Fs=-kx
• The pendulum does not

display SHM
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q But for very small q (rad), we can make the 
approximation (q<0.5 rad or about 25�)

® simple pendulum approximation

Arc length

Looks like spring 
force

Like the spring 
constant

This is SHM

q Now, consider the angular frequency of the spring



Simple 
pendulum 
angular 
frequency

Simple pendulum 
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• With this w, the same equations expressing the 
displacement x, v, and a for the spring can be used 
for the simple pendulum, as long as q is small
• For q large, the SHM equations (in terms of sin 
and cos) are no longer valid ® more complicated 
functions are needed (which we will not consider) 
• A pendulum does not have to be a point-particle



The Physical Pendulum
q A rigid body can also be a pendulum
q The simple pendulum has a moment of inertia
q Rewrite w in terms of I

q L is the distance from the rotation axis 
to the center of gravity
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Example
Use a thin disk for a simple physical pendulum 

with rotation axis at the rim. a) find its period 
of oscillation and b) the length of an 
equivalent simple pendulum.

Solution:
a) From table 12.2

But we need I at the rim, so
apply parallel axis theorem, h=R

R

M



Since physical pendulum frequency is

Distance from rotation axis to cm: L=R

Let R=0.165 m (6.5 inches)

Would make a good clock!



Note that the period or frequency of a pendulum 
does not depend on the mass and would be 
different on other planets
b) For an equivalent simple pendulum, we need 
the simple and disk pendulums to have the same 
period



Damped Harmonic Motion
q Simple harmonic motion in which the amplitude 
is steadily decreased due to the action of some 
non-conservative force(s), i.e. friction or air 
resistance (F=-bv, where b is the damping 
coefficient)
q 3 classifications of damped harmonic motion:

1. Underdamped – oscillation, but amplitude 
decreases with each cycle (shocks)

2. Critically damped – no oscillation, with 
smallest amount of damping

3. Overdamped – no oscillation, but more 
damping than needed for critical 



Apply Newton’s 2nd Law

Another 2nd-order ordinary differential 
equation, but with a 1st-order term
The solution is
Where
Type of damping determined by comparing



SHM
underdamped

Envelope 
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A=A0e-bt/2m
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Forced Harmonic Motion
q Unlike damped harmonic motion, the amplitude 
may increase with time
q Consider a swing (or a pendulum) and apply a 
force that increases with time; the amplitude will 
increase with time

Forced HM
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q Consider the spring-mass system, it has a 
frequency

q We call this the natural frequency f0 of the 
system. All systems (car, bridge, pendulum, etc.) 
have an f0
q We can apply a time-dependent external driving 
force with frequency fd (fd ¹f0) to the spring-mass 
system
q This is forced harmonic motion, the amplitude 
increases
q But if fd=f0, the amplitude can increase 
dramatically – this is a condition called resonance



q Examples: a) out-of-balance tire shakes 
violently at certain speeds,
b) Tacoma-
Narrows 
bridge’s f0
matches 
frequency 
of wind


