### Chapter 2: Kinematics in 1D

Mechanics - the study of the motion of objects (atoms, blood flow, ice skaters, cars, planes, galaxies, ...)

- Kinematics describes the motion of an object without reference to the cause of the motion
- Dynamics describes the effects that forces have on the motion of objects (Chapter 5)

- [Statics - describes the effects that forces have on an object which is at rest (bridge, building, ....)]

Α

Χ

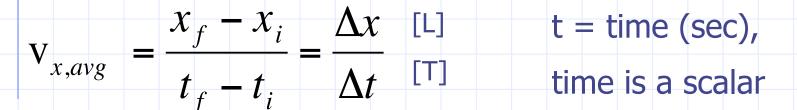
Kinematics provides answers to the questions: 1) Where is an object?
What is its velocity? 3) What is its acceleration?

### Displacement $\Delta \mathbf{x} = \mathbf{x}_{\mathbf{f}} - \mathbf{x}_{\mathbf{i}} = \text{displacement [L]}$ = 15 m - 5 m = 10 m in positive x-directionIf $\mathbf{x}_{\mathbf{f}} = -5 \text{ m}$ , then $\Delta \mathbf{x} = -5 \text{ m} - 5 \text{ m} = -10 \text{ m}$ in positive x-direction or (10 m in the negative x-direction)

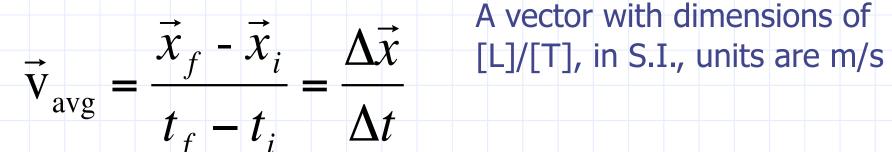
Speed and Velocity

Average speed = distance/(elapsed time)=D/ $\Delta$  t

While average velocity is displacement/(elapsed time):



in 1-dimension. Or in vector notation:



A vector with dimensions of

### Simple Example

A traveler arrives late at the airport at 1:08pm. Her plane is scheduled to depart at 1:22pm and the gate is 2.1 km away. What must be her minimum average running speed (in m/s) to make the flight?

 $\begin{array}{l} \hline Solution \\ \hline Given: t_i = 1:08 \ \text{pm}, t_f = 1:22 \ \text{pm}, \ D = 2.1 \ \text{km} \\ \hline What is average speed v_{av}? \\ \Delta t = t_f - t_i = 1:22 - 1:08 = 14 \ \text{mins} \\ \hline v_{av} = D/\Delta t = (2.1 \ \text{km})/(14 \ \text{mins}) = 0.15 \ \text{km/min} \\ = (0.15 \ \text{km/min})(1000 \ \text{m/1} \ \text{km})(1 \ \text{min}/ \ 60 \ \text{s}) \end{array}$ 

v<sub>av</sub>=2.5 m/s

### **Instantaneous Speed and Velocity**

Position

Χ

Instantaneous velocity is the velocity at some instant in time (as  $\Delta t$ goes to zero).

 $\int_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$ Instantaneous speed is the magnitude of the instantaneous velocity.

Instantaneous velocity in vector notation

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}}{dt}$$

t

Time

t

### Acceleration

The change in (instantaneous) velocity of an object, gives the average acceleration:

$$a_{x,avg} = \frac{\mathbf{V}_{xf} - \mathbf{V}_{xi}}{t_f - t_i} = \frac{\Delta \mathbf{V}_x}{\Delta t} \qquad \text{[L]/[T^2]}$$
In S.I., units are m/s<sup>2</sup>

Instantaneous acceleration

$$a_{x} = \lim_{\Delta t \to 0} \frac{\Delta v_{x}}{\Delta t} = \frac{dv_{x}}{dt}$$
$$= \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^{2}x}{dt^{2}}$$

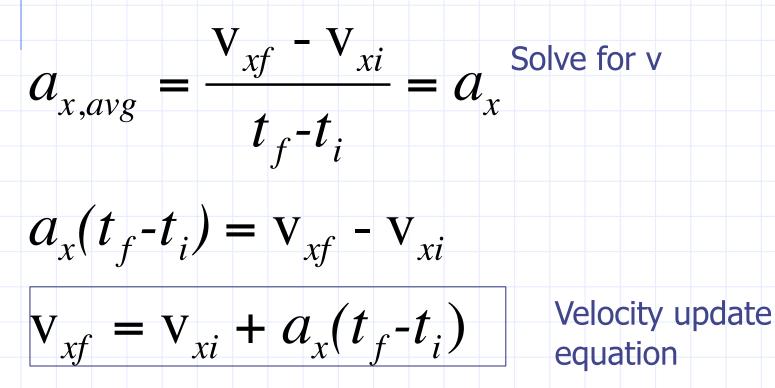
We will mostly consider constant accelerations

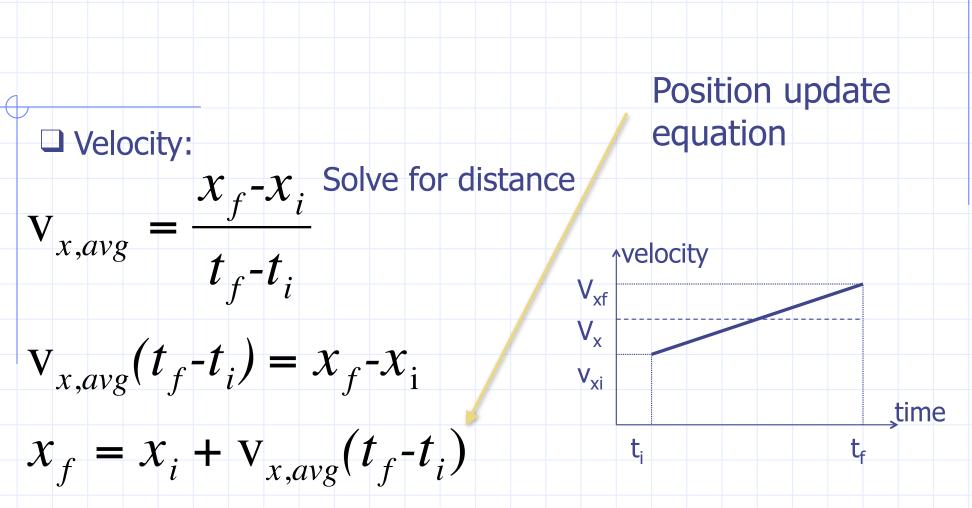
### **Equations of Kinematics**

Starting with the definitions of displacement, velocity, and acceleration, we can derive equations that allow us to predict the motion of an object

Here we consider constant acceleration

□ Acceleration:





What is average velocity? If acceleration is constant, the average velocity is the mean of the initial and final velocity:

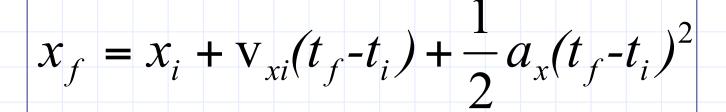
$$\mathbf{v}_{x,avg} = \frac{-}{2} (\mathbf{v}_{xi} + \mathbf{v}_{xf})$$

 $x_{f} = x_{i} + \frac{1}{2}(v_{xi} + v_{xf})(t_{f} - t_{i})$ 

Or:

Also, can substitute in the velocity v to give:

$$x_{f} = x_{i} + \frac{1}{2} [v_{xi} + v_{xi} + a_{x}(t_{f} - t_{i})](t_{f} - t_{i})$$



What if we have no information about time?

It can be removed from the equations.

From acceleration equation:

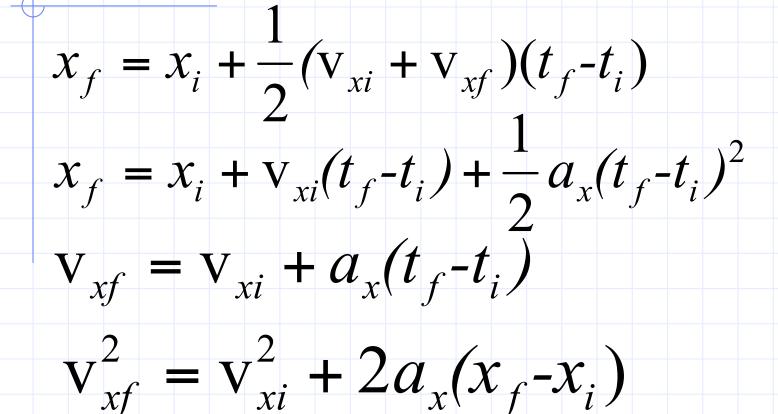
$$t_{f} - t_{i} = \frac{V_{xf} - V_{xi}}{a_{x}}$$
Substitute into x equation  
$$x_{f} = x_{i} + \frac{1}{2}(V_{xi} + V_{xf})\frac{(V_{xf} - V_{xi})}{a_{x}}$$
$$x_{f} = x_{i} + \frac{(V_{xf}^{2} - V_{xi}^{2})}{2a_{x}}$$

Since  $(V_{xi} + V_{xf})(V_{xf} - V_{xi}) = (V_{xf}^2 - V_{xi}^2)$ 

Then, solving for  $v_{xf}$  gives:

 $v_{xf}^2 = v_{xi}^2 + 2a_x(x_f - x_i)$ 

### Summary – Equations of Kinematics



# **Example Problem**

A car is traveling on a dry road with a velocity of +32.0 m/s. The driver slams on the brakes and skids to a halt with an acceleration of -8.00 m/s<sup>2</sup>. On an icy road, the car would have skidded to a halt with an acceleration of -3.00 m/s<sup>2</sup>. How much further would the car have skidded on the icy road compared to the dry road?

#### Solution:

Given:  $\mathbf{v}_i = 32.0 \text{ m/s}$  in positive x-direction  $\mathbf{a}_{dry} = -8.00 \text{ m/s}^2$  in positive x-direction  $\mathbf{a}_{icy} = -3.00 \text{ m/s}^2$  in positive x-direction Also,  $v_f=0$ , assume  $t_i=0$ ,  $x_i=0$ Find  $x_{dry}$  and  $x_{icy}$ , or  $x_{icy}-x_{dry}$ 

# **Example Problem**

A Boeing 747 Jumbo Jet has a length of 59.7 m. The runway on which the plane lands intersects another runway. The width of the intersection is 25.0 m. The plane accelerates through the intersection at a rate of -5.70 m/s<sup>2</sup> and clears it with a final speed of 45.0 m/s. How much time is needed for the plane to clear the intersection?

Solution:

Given: **a** = -5.70 m/s<sup>2</sup> in x-direction  $\mathbf{v}_{f} = +45.0$  m/s in x-direction  $L_{plane} = 59.7$  m,  $L_{intersection} = 25.0$  m Assume,  $t_{i} = 0$  when nose of Jet enters intersection. Find  $t_{f}$  when tail of Jet clears intersection.

# Example Problem (you do)

An electron with an initial speed of  $1.0 \times 10^4$  m/s enters the acceleration grid of a TV picture tube with a width of 1.0 cm. It exits the grid with a speed of  $4.0 \times 10^6$  m/s. What is the acceleration of the electron while in the grid and how long does it take for the electron to cross the grid?

Solution:

Given:  $\mathbf{v}_i = +1.0 \times 10^4$  m/s in x-direction

 $\mathbf{v}_{f} = +4.0 \times 10^{6} \text{ m/s in x-direction}$ 

∆x=1.0 cm

Find a (= $8.0 \times 10^{14}$  m/s<sup>2</sup>) and t<sub>f</sub> (=5.0 ns).

### Motion in Free-fall

- □ Consider 1D vertical motion on the surface of a very massive object (Earth, other planets, the sun, even large asteroids)
- □ Replace x with y in 1D kinematic equations
- Acceleration is always non-zero (but constant)
- Acceleration of an object is due to gravity (we will study gravitational forces later)
- □ All objects near the surface of the Earth experience the same constant, downward acceleration

□ The acceleration due to gravity does not depend on the mass, size, shape, density, or any intrinsic property of the falling object

- The acceleration due to gravity does not depend on height (for heights near the Earth's surface)
- □ For Earth, the acceleration due to gravity has the value (notice g is the magnitude of the acceleration, i.e., a scalar, therefore positive):

### $g = 9.80 \text{ m/s}^2 \text{ or } 32.2 \text{ ft/s}^2$

□ For other bodies, g has different values:

$$g_{moon} = 1.60 \text{ m/s}^2$$

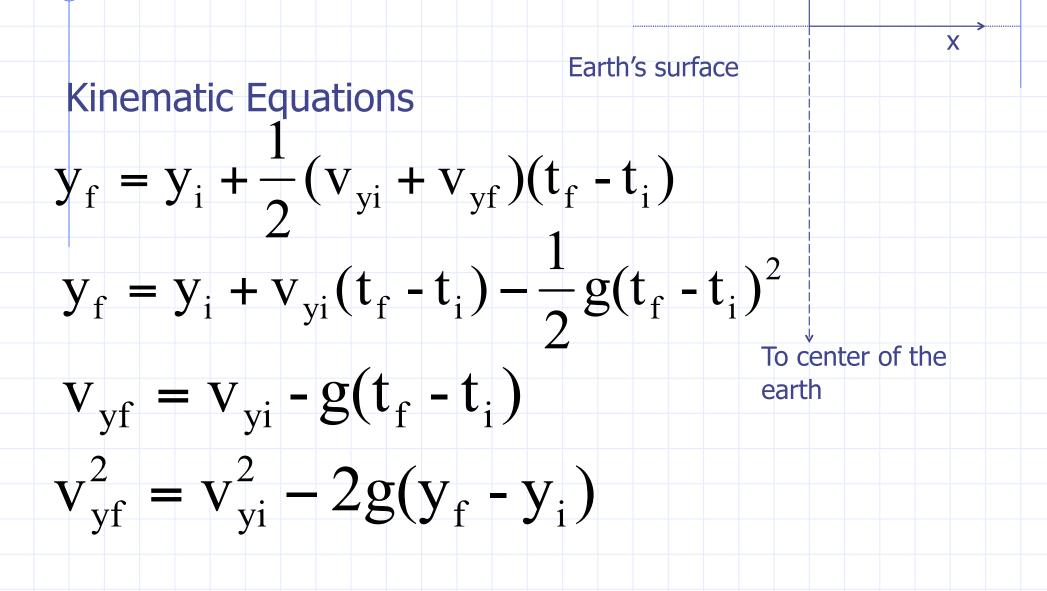
$$g_{Jupiter} = 26.4 \text{ m/s}^2$$

# Taipei 101





### $\vec{a}_y = -g$ in y - direction



# **Example Problem**

A ball is thrown upward from the top of a 25.0-m tall building. The ball's initial speed is 12.0 m/s. At the same instant, a person is running on the ground at a distance of 31.0 m from the building. What must be the average speed of the person if he is to catch the ball at the bottom of the building?

Solution: Two particles, one with x-motion, one with y-motion

| Given: | $\mathbf{V}_{vib} =$ | +12.0 | m/s in | y-direction |
|--------|----------------------|-------|--------|-------------|
|        | yiD                  |       | · ·    |             |

y<sub>ib</sub>=25.0 m, x<sub>ip</sub>=31.0 m

What is average speed of runner?